IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1283-d1606267.html
   My bibliography  Save this article

Stochastic Capacity Expansion Model Accounting for Uncertainties in Fuel Prices, Renewable Generation, and Demand

Author

Listed:
  • Naga Srujana Goteti

    (Electric Power Research Institute, Washington, DC 20036, USA)

  • Eric Hittinger

    (Rochester Institute of Technology, Rochester, NY 14623, USA)

  • Eric Williams

    (Rochester Institute of Technology, Rochester, NY 14623, USA)

Abstract

Capacity expansion models for electricity grids typically use deterministic optimization, addressing uncertainty through ex-post analysis by varying input parameters. This paper presents a stochastic capacity expansion model that integrates uncertainty directly into optimization, enabling the selection of a single strategy robust across a defined range of uncertainties. Two cost-based risk objectives are explored: “risk-neutral” minimizes expected total system cost, and “risk-averse” minimizes the most expensive 5% of the cost distribution. The model is applied to the U.S. Midwest grid, accounting for uncertainties in electricity demand, natural gas prices, and wind generation patterns. While uncertain gas prices lead to wind additions, wind variability leads to reduced adoption when explicitly accounted for. The risk-averse objective produces a more diverse generation portfolio, including six GW more solar, three GW more biomass, along with lower current fleet retirements. Stochastic objectives reduce mean system costs by 4.5% (risk-neutral) and 4.3% (risk-averse) compared to the deterministic case. Carbon emissions decrease by 1.5% under the risk-neutral objective, but increase by 3.0% under the risk-averse objective due to portfolio differences.

Suggested Citation

  • Naga Srujana Goteti & Eric Hittinger & Eric Williams, 2025. "Stochastic Capacity Expansion Model Accounting for Uncertainties in Fuel Prices, Renewable Generation, and Demand," Energies, MDPI, vol. 18(5), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1283-:d:1606267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    2. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    3. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2016. "Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 620-630.
    4. Timo Lohmann & Steffen Rebennack, 2017. "Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand Response," Management Science, INFORMS, vol. 63(6), pages 2027-2048, June.
    5. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    6. EHRENMANN, Andreas & SMEERS, Yves, 2011. "Generation capacity expansion in a risky environment: a stochastic equilibrium analysis," LIDAM Reprints CORE 2379, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    8. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    9. Hunter, Kevin & Sreepathi, Sarat & DeCarolis, Joseph F., 2013. "Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa)," Energy Economics, Elsevier, vol. 40(C), pages 339-349.
    10. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Bello, S. & Reiner, 2024. "Experience Curves for Electrolysis Technologies," Cambridge Working Papers in Economics 2476, Faculty of Economics, University of Cambridge.
    3. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
    4. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    5. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
    6. Mauleón, Ignacio, 2019. "Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    8. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    10. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    11. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    12. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
    13. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    14. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    15. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    16. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    17. Bistline, John E.T. & Merrick, James H., 2020. "Parameterizing open-source energy models: Statistical learning to estimate unknown power plant attributes," Applied Energy, Elsevier, vol. 269(C).
    18. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Patankar, Neha & Fell, Harrison G. & Rodrigo de Queiroz, Anderson & Curtis, John & DeCarolis, Joseph F., 2022. "Improving the representation of energy efficiency in an energy system optimization model," Applied Energy, Elsevier, vol. 306(PB).
    20. Svetlana Lawrence & Daniel R. Herber & Kamran Eftekhari Shahroudi, 2025. "Leveraging System Dynamics to Predict the Commercialization Success of Emerging Energy Technologies: Lessons from Wind Energy," Energies, MDPI, vol. 18(8), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1283-:d:1606267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.