IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4486-d1731000.html
   My bibliography  Save this article

Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry

Author

Listed:
  • Agata Wajda

    (Institute of Energy and Fuel Processing Technology, 41-803 Zabrze, Poland)

  • Ewa Brągoszewska

    (Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

Abstract

Actions related to reducing CO 2 emissions have led to the development of technologies using raw materials in the form of broadly understood biomass as CO 2 -neutral fuels. There has been a rapid development of pyrolysis processes (carbonization, dry distillation) of various types of biomass toward the production of biochar for industrial applications. Particularly high hopes are associated with the use of biochar as a substitute for fossil fuel in energy-intensive sectors of the economy, especially the metallurgical and steel industries. This paper characterizes the current state and potential for biochar application, using the iron and steel industry as a case study. The analysis focuses primarily on the characteristics of biochar production and its industrial application potential. The characterization includes the diversity of biomass feedstocks, processing methods, and reactor types, the influence of operational parameters on biochar yield, as well as the properties and applications of biochar. As part of the analysis of biomass use potential in the iron and steel industry, the study reviews the current levels of coal substitution achieved at the laboratory scale and presents examples of biochar implementation in existing industrial facilities. In addition, key factors limiting the feasibility of coal substitution in the iron and steel industry are identified. The summary includes the main directions for further research aimed at increasing the use of biochar in industry.

Suggested Citation

  • Agata Wajda & Ewa Brągoszewska, 2025. "Insight into the Potential Use of Biochar as a Substitute for Fossil Fuels in Energy-Intensive Industries on the Example of the Iron and Steel Industry," Energies, MDPI, vol. 18(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4486-:d:1731000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Biniek-Poskart & Marcin Sajdak & Magdalena Skrzyniarz & Jakub Rzącki & Andrzej Skibiński & Monika Zajemska, 2023. "The Application of Lignocellulosic Biomass Waste in the Iron and Steel Industry in the Context of Challenges Related to the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-25, September.
    2. Marian Niesler & Janusz Stecko & Sławomir Stelmach & Anna Kwiecińska-Mydlak, 2021. "Biochars in Iron Ores Sintering Process: Effect on Sinter Quality and Emission," Energies, MDPI, vol. 14(13), pages 1-20, June.
    3. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams, 2016. "The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 1-6, June.
    4. Maria P. C. Volpi & Jean C. G. Silva & Andreas Hornung & Miloud Ouadi, 2024. "Review of the Current State of Pyrolysis and Biochar Utilization in Europe: A Scientific Perspective," Clean Technol., MDPI, vol. 6(1), pages 1-24, February.
    5. Chibi A. Takaya & Kiran R. Parmar & Louise A. Fletcher & Andrew B. Ross, 2019. "Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia," Agriculture, MDPI, vol. 9(1), pages 1-15, January.
    6. Pinto, Raphael Guimarães D. & Szklo, Alexandre S. & Rathmann, Regis, 2018. "CO2 emissions mitigation strategy in the Brazilian iron and steel sector–From structural to intensity effects," Energy Policy, Elsevier, vol. 114(C), pages 380-393.
    7. Meng, Fan & Rong, Guoqiang & Zhao, Ruiji & Chen, Bo & Xu, Xiaoyun & Qiu, Hao & Cao, Xinde & Zhao, Ling, 2024. "Incorporating biochar into fuels system of iron and steel industry: carbon emission reduction potential and economic analysis," Applied Energy, Elsevier, vol. 356(C).
    8. Krzysztof Mazurek & Sebastian Drużyński & Urszula Kiełkowska & Adriana Wróbel-Kaszanek & Bartłomiej Igliński & Marcin Cichosz, 2024. "The Application of Pyrolysis Biochar Obtained from Waste Rapeseed Cake to Remove Copper from Industrial Wastewater: An Overview," Energies, MDPI, vol. 17(2), pages 1-16, January.
    9. Agnieszka Kozioł & Dominika Paliwoda & Grzegorz Mikiciuk & Nadhira Benhadji, 2024. "Biochar as a Multi-Action Substance Used to Improve Soil Properties in Horticultural and Agricultural Crops—A Review," Agriculture, MDPI, vol. 14(12), pages 1-40, November.
    10. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Biniek-Poskart & Marcin Sajdak & Magdalena Skrzyniarz & Jakub Rzącki & Andrzej Skibiński & Monika Zajemska, 2023. "The Application of Lignocellulosic Biomass Waste in the Iron and Steel Industry in the Context of Challenges Related to the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-25, September.
    2. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    3. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    4. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    5. Dimitrios-Aristotelis Koumpakis & Alexandra V. Michailidou & Christos Vlachokostas, 2025. "Harnessing Pyrolysis for Industrial Energy Autonomy and Sustainable Waste Management," Energies, MDPI, vol. 18(12), pages 1-23, June.
    6. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    7. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    8. Mingyuan Zhou & Heng Chen & Minghong Liu & Yinan Wang & Lingshuang Liu & Yan Zhang, 2025. "Development Analysis of China’s New-Type Power System Based on Governmental and Media Texts via Multi-Label BERT Classification," Energies, MDPI, vol. 18(17), pages 1-29, September.
    9. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    10. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    11. Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2025. "Study on the coupling of the iron and steel industry with renewable energy for low-carbon production: A case study of matching steel plants with photovoltaic power plants in China," Energy, Elsevier, vol. 320(C).
    12. Daniel Chernick & Valerie Dupont & Andrew B. Ross, 2025. "The Potential to Produce Bio-Based Ammonia Adsorbents from Lignin-Rich Residues," Clean Technol., MDPI, vol. 7(2), pages 1-24, April.
    13. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    14. Duan, Wenjun & Dong, Xinyuan & Gao, Lihua & Wang, Zhimei & Wang, Junhan, 2025. "Insights into thermodynamic characteristics of CO2/H2O(g) co-assist coke oven gas reforming using steel slag as heat carrier," Energy, Elsevier, vol. 328(C).
    15. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    16. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    17. Suad Al Hosni & Marta Domini & Reza Vahidzadeh & Giorgio Bertanza, 2024. "Potential and Environmental Benefits of Biochar Utilization for Coal/Coke Substitution in the Steel Industry," Energies, MDPI, vol. 17(11), pages 1-16, June.
    18. Patrick Criqui & Sandrine Mathy, 2016. "The pragmatic approach of the Paris Agreement: The role of INDCs and deep decarbonization pathways," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(3), pages 79-87.
    19. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    20. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4486-:d:1731000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.