IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3041-d1674522.html
   My bibliography  Save this article

Harnessing Pyrolysis for Industrial Energy Autonomy and Sustainable Waste Management

Author

Listed:
  • Dimitrios-Aristotelis Koumpakis

    (Sustainability Engineering Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, P.O Box 483, 54124 Thessaloniki, Greece)

  • Alexandra V. Michailidou

    (Sustainability Engineering Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, P.O Box 483, 54124 Thessaloniki, Greece)

  • Christos Vlachokostas

    (Sustainability Engineering Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, P.O Box 483, 54124 Thessaloniki, Greece)

Abstract

This study describes the step-by-step development of a simplified system which can be implemented in industrial facilities with the help of their own surplus of plastic waste, mainly packaging waste, to reach a level of energy autonomy or semi-autonomy. This waste is converted to about 57,500 L of synthetic pyrolysis oil, which can then be used to power industries, being fed into a Combined Heat and Power system. To achieve this goal, the design has hydrocarbon stability at elevated temperature and restricted oxygen exposure, so that they can be converted to new products. Pyrolysis is a key process which causes thermo-chemical changes—ignition and vaporization. The research outlines the complete process of creating a basic small-scale pyrolysis system which industrial facilities can use to generate energy from their plastic waste. The proposed unit processes 360 tons of plastic waste yearly to produce 160 tons of synthetic pyrolysis oil which enables the generation of 500 MWh of electricity and 60 MWh of heat. The total investment cost is estimated at EUR 41,000, with potential annual revenue of up to EUR 45,000 via net metering. The conceptual design proves both environmental and economic viability by providing a workable method for decentralized waste-to-energy solutions for Small and Medium-sized Enterprises.

Suggested Citation

  • Dimitrios-Aristotelis Koumpakis & Alexandra V. Michailidou & Christos Vlachokostas, 2025. "Harnessing Pyrolysis for Industrial Energy Autonomy and Sustainable Waste Management," Energies, MDPI, vol. 18(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3041-:d:1674522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    2. Maria P. C. Volpi & Jean C. G. Silva & Andreas Hornung & Miloud Ouadi, 2024. "Review of the Current State of Pyrolysis and Biochar Utilization in Europe: A Scientific Perspective," Clean Technol., MDPI, vol. 6(1), pages 1-24, February.
    3. Christos Mertzanakis & Christos Vlachokostas & Charalampos Toufexis & Alexandra V. Michailidou, 2024. "Closing the Loop between Waste-to-Energy Technologies: A Holistic Assessment Based on Multiple Criteria," Energies, MDPI, vol. 17(12), pages 1-21, June.
    4. Pablo Benalcazar & Marcin Malec & Przemysław Kaszyński & Jacek Kamiński & Piotr W. Saługa, 2024. "Electricity Cost Savings in Energy-Intensive Companies: Optimization Framework and Case Study," Energies, MDPI, vol. 17(6), pages 1-16, March.
    5. Canice C. Uzosike & Lachlan H. Yee & Ricardo Vasquez Padilla, 2023. "Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP," Energies, MDPI, vol. 16(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tibor Princz-Jakovics & Márton Szemenyei, 2024. "Development of an e-governance system to support cooperative environmental policy actions," Environment Systems and Decisions, Springer, vol. 44(4), pages 763-778, December.
    2. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    3. Ilona Skačkauskienė & Povilas Švogžlys, 2021. "Improving the Process of Developing New Services Using Uncertain Data," Energies, MDPI, vol. 14(16), pages 1-20, August.
    4. Colambage, D. Punsara & Wijayapala, W.D. Anura S. & Siyambalapitiya, Tilak, 2024. "Analysing the impact of diverse factors on electricity generation cost: Insights from Sri Lanka," Energy, Elsevier, vol. 311(C).
    5. Kleanthis Koupidis & Charalampos Bratsas & Christos Vlachokostas, 2022. "OpΕnergy: An Intelligent System for Monitoring EU Energy Strategy Using EU Open Data," Energies, MDPI, vol. 15(21), pages 1-15, November.
    6. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Vangelis Marinakis & Alexandros Flamos & Giorgos Stamtsis & Ioannis Georgizas & Yannis Maniatis & Haris Doukas, 2020. "The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    8. Meiping Zhang & Yanqi Zhang & Jiajia Cui & Zongyao Zhang & Zaoxue Yan, 2022. "Biomass-Based Oxygen Reduction Reaction Catalysts from the Perspective of Ecological Aesthetics—Duckweed Has More Advantages than Soybean," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    9. Hmouda, Ahmed M.O. & Orzes, Guido & Sauer, Philipp C., 2024. "Sustainable supply chain management in energy production: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Weronika Urbańska & Anna Janda & Magdalena Osial & Mateusz Słowikowski, 2023. "Sustainable Municipal Waste Management during the COVID-19 Pandemic—A Case Study of Poland," Resources, MDPI, vol. 12(7), pages 1-16, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3041-:d:1674522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.