IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3878-d1706317.html
   My bibliography  Save this article

Intelligent Modelling Techniques for Enhanced Thermal Comfort and Energy Optimisation in Residential Buildings

Author

Listed:
  • Shamaila Iram

    (Department of Computer Science, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Hafiz Muhammad Athar Farid

    (Department of Computer Science, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Abduljelil Adeola Akande

    (Department of Computer Science, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Hafiz Muhammad Shakeel

    (Department of Computer Science, University of Huddersfield, Huddersfield HD1 3DH, UK)

Abstract

This study examines the utilisation of sophisticated predictive methodologies to enhance the energy efficiency and comfort of residential structures. The ASHRAE Global Thermal Comfort Database II was employed to construct and evaluate machine learning models that were designed to predict thermal comfort levels while optimising energy consumption. Air temperature, garment insulation, metabolic rate, air velocity, and humidity were identified as critical comfort determinants. Numerous predictive models were assessed, and XGBoost demonstrated improved performance as a result of hyperparameter optimisation (R 2 = 0.9394, MSE = 0.0224). The study underscores the ability of sophisticated algorithms to clarify the complex relationships between environmental factors and occupant comfort. This sophisticated modelling methodology provides a practical approach to enhancing the efficiency of residential energy consumption while simultaneously ensuring the comfort of the occupants, thereby promoting more sustainable and comfortable living environments.

Suggested Citation

  • Shamaila Iram & Hafiz Muhammad Athar Farid & Abduljelil Adeola Akande & Hafiz Muhammad Shakeel, 2025. "Intelligent Modelling Techniques for Enhanced Thermal Comfort and Energy Optimisation in Residential Buildings," Energies, MDPI, vol. 18(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3878-:d:1706317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naja Aqilah & Hom Bahadur Rijal & Sheikh Ahmad Zaki, 2022. "A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential," Energies, MDPI, vol. 15(23), pages 1-23, November.
    2. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    4. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Al Mindeel, T. & Spentzou, E. & Eftekhari, M., 2024. "Energy, thermal comfort, and indoor air quality: Multi-objective optimization review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Dong, Feng & Li, Zhicheng & Huang, Zihuang & Liu, Yu, 2024. "Extreme weather, policy uncertainty, and risk spillovers between energy, financial, and carbon markets," Energy Economics, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Alejandra Martínez-Martínez & Rafael Llorca-Vivero, 2025. "The Taxonomy of Climate Change: How Rising Temperatures Unequally Impact Nations’ Discomfort," Working Papers 2507, Department of Applied Economics II, Universidad de Valencia.
    3. Tsai, I-Chun, 2024. "A wise investment by urban governments: Evidence from intelligent sports facilities," Journal of Asian Economics, Elsevier, vol. 92(C).
    4. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    5. Andreas Hefti & Peiyao Shen & King King Li, 2021. "Igniting deliberation in high stake decisions: a field study," ECON - Working Papers 378, Department of Economics - University of Zurich.
    6. Xie, Qichang & Gong, Ruize & Yin, Lei & Xu, Xin, 2025. "Does extreme climate exacerbate the risk spillover in green finance markets? evidence from a multi-horizon investment perspective," Journal of International Money and Finance, Elsevier, vol. 151(C).
    7. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    8. Juan Botero-Valencia & Adrian Martinez-Perez & Ruber Hernández-García & Luis Castano-Londono, 2023. "Exploring Spatial Patterns in Sensor Data for Humidity, Temperature, and RSSI Measurements," Data, MDPI, vol. 8(5), pages 1-13, April.
    9. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    10. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    11. Lin, Boqiang & Wang, You, 2025. "Climate change and China's food security," Energy, Elsevier, vol. 318(C).
    12. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    13. Dai, Mingkun & Li, Hangxin & Wang, Shengwei, 2023. "A reinforcement learning-enabled iterative learning control strategy of air-conditioning systems for building energy saving by shortening the morning start period," Applied Energy, Elsevier, vol. 334(C).
    14. Shan Lin & Yu Zhang & Xuanjiang Chen & Chengzhi Pan & Xianjun Dong & Xiang Xie & Long Chen, 2025. "Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation," Sustainability, MDPI, vol. 17(15), pages 1-25, August.
    15. Kerui Du & Shuai Shao & Zheming Yan, 2021. "Urban Residential Energy Demand and Rebound Effect in China: A Stochastic Energy Demand Frontier Approach," The Energy Journal, , vol. 42(4), pages 175-194, July.
    16. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Reviewing and Integrating AEC Practices into Industry 6.0: Strategies for Smart and Sustainable Future-Built Environments," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    18. Lee, Chien-Chiang & Wang, Chih-Wei & Ho, Shan-Ju & Wu, Ting-Pin, 2025. "Corrigendum to “The impact of natural disaster on energy consumption: International evidence” [Energy Economics Volume 97, May 2021, 105021]," Energy Economics, Elsevier, vol. 149(C).
    19. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    20. Tol, Richard S. J., "undated". "The Economic Impact of Weather and Climate," FEEM Working Papers 309917, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3878-:d:1706317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.