IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3350-d1687901.html
   My bibliography  Save this article

A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles

Author

Listed:
  • Chenghao Lyu

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
    Tsintelink Technology Co., Ltd., Beijing 100084, China)

  • Nuo Lei

    (Tsintelink Technology Co., Ltd., Beijing 100084, China
    School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Chaoyi Chen

    (School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Hao Zhang

    (Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA)

Abstract

Hybrid electric vertical take-off and landing (HEVTOL) flying vehicles serve as effective platforms for efficient transportation, forming a cornerstone of the emerging low-altitude economy. However, the current lack of co-optimization methods for powertrain component sizing and energy controller design often leads to suboptimal HEVTOL performance. To address this, this paper proposes a hierarchical manifold-enhanced Bayesian evolutionary optimization (HM-BEO) approach for HEVTOL systems. This framework employs lightweight manifold dimensionality reduction to compress the decision space, enabling Bayesian optimization (BO) on low-dimensional manifolds for a global coarse search. Subsequently, the approximate Pareto solutions generated by BO are utilized as initial populations for a non-dominated sorting genetic algorithm III (NSGA-III), which performs fine-grained refinement in the original high-dimensional design space. The co-optimization aims to minimize fuel consumption, battery state-of-health (SOH) degradation, and manufacturing costs while satisfying dynamic and energy management constraints. Evaluated using representative HEVTOL duty cycles, the HM-BEO demonstrates significant improvements in optimization efficiency and solution quality compared to conventional methods. Specifically, it achieves a 5.3% improvement in fuel economy, a 7.4% mitigation in battery SOH degradation, and a 1.7% reduction in system manufacturing cost compared to standard NSGA-III-based optimization.

Suggested Citation

  • Chenghao Lyu & Nuo Lei & Chaoyi Chen & Hao Zhang, 2025. "A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles," Energies, MDPI, vol. 18(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3350-:d:1687901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3350/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3350-:d:1687901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.