IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3350-d1687901.html
   My bibliography  Save this article

A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles

Author

Listed:
  • Chenghao Lyu

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
    Tsintelink Technology Co., Ltd., Beijing 100084, China)

  • Nuo Lei

    (Tsintelink Technology Co., Ltd., Beijing 100084, China
    School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Chaoyi Chen

    (School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Hao Zhang

    (Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA)

Abstract

Hybrid electric vertical take-off and landing (HEVTOL) flying vehicles serve as effective platforms for efficient transportation, forming a cornerstone of the emerging low-altitude economy. However, the current lack of co-optimization methods for powertrain component sizing and energy controller design often leads to suboptimal HEVTOL performance. To address this, this paper proposes a hierarchical manifold-enhanced Bayesian evolutionary optimization (HM-BEO) approach for HEVTOL systems. This framework employs lightweight manifold dimensionality reduction to compress the decision space, enabling Bayesian optimization (BO) on low-dimensional manifolds for a global coarse search. Subsequently, the approximate Pareto solutions generated by BO are utilized as initial populations for a non-dominated sorting genetic algorithm III (NSGA-III), which performs fine-grained refinement in the original high-dimensional design space. The co-optimization aims to minimize fuel consumption, battery state-of-health (SOH) degradation, and manufacturing costs while satisfying dynamic and energy management constraints. Evaluated using representative HEVTOL duty cycles, the HM-BEO demonstrates significant improvements in optimization efficiency and solution quality compared to conventional methods. Specifically, it achieves a 5.3% improvement in fuel economy, a 7.4% mitigation in battery SOH degradation, and a 1.7% reduction in system manufacturing cost compared to standard NSGA-III-based optimization.

Suggested Citation

  • Chenghao Lyu & Nuo Lei & Chaoyi Chen & Hao Zhang, 2025. "A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles," Energies, MDPI, vol. 18(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3350-:d:1687901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shantanu Pardhi & Mohamed El Baghdadi & Oswin Hulsebos & Omar Hegazy, 2022. "Optimal Powertrain Sizing of Series Hybrid Coach Running on Diesel and HVO for Lifetime Carbon Footprint and Total Cost Minimisation," Energies, MDPI, vol. 15(19), pages 1-28, September.
    2. Qing, Hongyuan & Feng, Yuan & Zhang, Caizhi & Gao, Jinwu & Chen, Hao & Hao, Dong & Yu, Pengcheng & Simonovic, Milos, 2025. "Parallel structure-based decentralized model predictive control of vehicle PEMFC anode circulation system," Energy, Elsevier, vol. 324(C).
    3. Liu, Xinglong & Zhao, Fuquan & Hao, Han & Liu, Zongwei, 2023. "Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China," Energy, Elsevier, vol. 276(C).
    4. Haiming Bao & Peter Knights & Mehmet Kizil & Micah Nehring, 2024. "Energy Consumption and Battery Size of Battery Trolley Electric Trucks in Surface Mines," Energies, MDPI, vol. 17(6), pages 1-23, March.
    5. He, Yinglong & Wang, Chongming & Zhou, Quan & Li, Ji & Makridis, Michail & Williams, Huw & Lu, Guoxiang & Xu, Hongming, 2020. "Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system," Applied Energy, Elsevier, vol. 266(C).
    6. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    7. Jin, Nini & Jia, Feifei & Dai, Lihong & Liu, Haoye & Wang, Tianyou & Hu, Peng, 2025. "A hierarchical energy management strategy for PHEVs: Optimizing SOC trajectory tracking performance using adaptive initial equivalent factor strategy (AIEFS)," Energy, Elsevier, vol. 318(C).
    8. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    9. Wang, Zongfei & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2025. "Home or workplace charging? Spatio-temporal flexibility of electric vehicles within Swiss electricity system," Energy, Elsevier, vol. 320(C).
    10. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    11. Stefan Milićević & Ivan Blagojević & Saša Milojević & Milan Bukvić & Blaža Stojanović, 2024. "Numerical Analysis of Optimal Hybridization in Parallel Hybrid Electric Powertrains for Tracked Vehicles," Energies, MDPI, vol. 17(14), pages 1-19, July.
    12. Omkar Parkar & Benjamin Snyder & Adibuzzaman Rahi & Sohel Anwar, 2023. "Modified Particle Swarm Optimization Based Powertrain Energy Management for Range Extended Electric Vehicle," Energies, MDPI, vol. 16(13), pages 1-21, June.
    13. Jia, Chunchun & Liu, Wei & He, Hongwen & Chau, K.T., 2025. "Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control," Applied Energy, Elsevier, vol. 394(C).
    14. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    15. Wang, Zhijian & Jiang, Pengwei & Chen, Zhongxin & Li, Yanfeng & Ren, Weibo & Dong, Lei & Du, Wenhua & Wang, Junyuan & Zhang, Xiaohong & Shi, Hui, 2025. "Remaining useful life prediction method based on two-phase adaptive drift Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    16. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    17. Tian, Aina & Yu, Haijun & Hu, Zhaoyu & Wang, Yuqin & Wu, Tiezhou & Jiang, Jiuchun, 2025. "A novel remaining useful life prediction method based on CNN-Attention combined with SMA-GPR," Energy, Elsevier, vol. 321(C).
    18. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    19. Wu, Xiaolan & Cao, Binggang & Li, Xueyan & Xu, Jun & Ren, Xiaolong, 2011. "Component sizing optimization of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 88(3), pages 799-804, March.
    20. Lu, Dagang & Yi, Fengyan & Hu, Donghai & Li, Jianwei & Yang, Qingqing & Wang, Jing, 2023. "Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    2. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    3. Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
    4. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).
    5. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    6. Zhao, Yinghua & Huang, Siqi & Wang, Xiaoyu & Shi, Jingwu & Yao, Shouwen, 2024. "Energy management with adaptive moving average filter and deep deterministic policy gradient reinforcement learning for fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 312(C).
    7. He, Yinglong & Wang, Chongming & Zhou, Quan & Li, Ji & Makridis, Michail & Williams, Huw & Lu, Guoxiang & Xu, Hongming, 2020. "Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system," Applied Energy, Elsevier, vol. 266(C).
    8. Yanwei Liu & Mingda Wang & Jialuo Tan & Jie Ye & Jiansheng Liang, 2024. "Real-Time Energy Management Strategy for Fuel Cell Vehicles Based on DP and Rule Extraction," Energies, MDPI, vol. 17(14), pages 1-20, July.
    9. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    10. Hu, Dong & Huang, Chao & Wu, Jingda & Wei, Henglai & Pi, Dawei, 2025. "Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles," Applied Energy, Elsevier, vol. 381(C).
    11. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    12. Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
    13. Wang, Zhiguo & Wei, Hongqian & Xi, Yecheng & Xiao, Gongwei, 2024. "Data-driven energy utilization for plug-in hybrid electric bus with driving patten application and battery health considerations," Energy, Elsevier, vol. 310(C).
    14. Jin, Nini & Jia, Feifei & Dai, Lihong & Liu, Haoye & Wang, Tianyou & Hu, Peng, 2025. "A hierarchical energy management strategy for PHEVs: Optimizing SOC trajectory tracking performance using adaptive initial equivalent factor strategy (AIEFS)," Energy, Elsevier, vol. 318(C).
    15. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    16. Wang, Zongfei & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2025. "Home or workplace charging? Spatio-temporal flexibility of electric vehicles within Swiss electricity system," Energy, Elsevier, vol. 320(C).
    17. Bai, Fanlong & Zhao, Fuquan & Liu, Ming & Liu, Zongwei & Hao, Han & Reiner, David M., 2025. "Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks," Applied Energy, Elsevier, vol. 383(C).
    18. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    19. Bin Huang & Wenbin Yu & Minrui Ma & Xiaoxu Wei & Guangya Wang, 2025. "Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(14), pages 1-42, July.
    20. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3350-:d:1687901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.