IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6974-d923099.html
   My bibliography  Save this article

Optimal Powertrain Sizing of Series Hybrid Coach Running on Diesel and HVO for Lifetime Carbon Footprint and Total Cost Minimisation

Author

Listed:
  • Shantanu Pardhi

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohamed El Baghdadi

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Oswin Hulsebos

    (VDL Enabling Transport Solutions BV, De Vest 11, 5555 XL Valkenswaard, The Netherlands)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

This article aims to calculate, analyse and compare the optimal powertrain sizing solutions for a long-haul plug-in series hybrid coach running on diesel and hydrotreated vegetable oil (HVO) using a co-design optimisation approach for: (1) lowering lifetime carbon footprint; (2) minimising the total cost of ownership (TCO); (3) finding the right sizing compromise between environmental impact and economic feasibility for the two fuel cases. The current vehicle use case derived from the EU H2020 LONGRUN project features electrical auxiliary loads and a 100 km zero urban emission range requiring a considerable battery size, which makes its low carbon footprint and cost-effective sizing a crucial challenge. Changing the objective between environmental impact and overall cost minimisation or switching the energy source from diesel to renewable HVO could also significantly affect the optimal powertrain dimensions. The approach uses particle swarm optimisation in the outer sizing loop while energy management is implemented using an adaptive equivalent consumption minimisation strategy (A-ECMS). Usage of HVO fuel over diesel offered an approximately 62% reduction in lifetime carbon footprint for around a 12.5% increase in overall costs across all sizing solutions. For such an unconventional powertrain topology, the fuel economy-focused solution neither achieved the lowest carbon footprint nor overall costs. In comparison, C O 2 − cost balanced sizing resulted in reductions close to the single objective-focused solutions (5.7% against 5.9% for the C O 2 solution, 7.7% against 7.9% for the TCO solution on HVO) with lowered compromise on other side targets ( C O 2 reduction of 5.7% against 4.9% found in the TCO-focused solution, TCO lowering of 7.7% against 4.4% found in the C O 2 -focused solution).

Suggested Citation

  • Shantanu Pardhi & Mohamed El Baghdadi & Oswin Hulsebos & Omar Hegazy, 2022. "Optimal Powertrain Sizing of Series Hybrid Coach Running on Diesel and HVO for Lifetime Carbon Footprint and Total Cost Minimisation," Energies, MDPI, vol. 15(19), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6974-:d:923099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frans J. R. Verbruggen & Emilia Silvas & Theo Hofman, 2020. "Electric Powertrain Topology Analysis and Design for Heavy-Duty Trucks," Energies, MDPI, vol. 13(10), pages 1-30, May.
    2. Kiyoung Kim & Namdoo Kim & Jongryeol Jeong & Sunghwan Min & Horim Yang & Ram Vijayagopal & Aymeric Rousseau & Suk Won Cha, 2021. "A Component-Sizing Methodology for a Hybrid Electric Vehicle Using an Optimization Algorithm," Energies, MDPI, vol. 14(11), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    2. Ruslans Smigins & Kristaps Sondors & Vilnis Pirs & Ilmars Dukulis & Gints Birzietis, 2023. "Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5," Energies, MDPI, vol. 16(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Wolff & Svenja Kalt & Manuel Bstieler & Markus Lienkamp, 2021. "Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study," Energies, MDPI, vol. 14(2), pages 1-15, January.
    2. Armin Norouzi & Hamed Heidarifar & Mahdi Shahbakhti & Charles Robert Koch & Hoseinali Borhan, 2021. "Model Predictive Control of Internal Combustion Engines: A Review and Future Directions," Energies, MDPI, vol. 14(19), pages 1-40, October.
    3. Emad Roshandel & Amin Mahmoudi & Solmaz Kahourzade & Amirmehdi Yazdani & GM Shafiullah, 2021. "Losses in Efficiency Maps of Electric Vehicles: An Overview," Energies, MDPI, vol. 14(22), pages 1-27, November.
    4. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    5. Konstantina Bitsi & Sjoerd G. Bosga & Oskar Wallmark, 2022. "Design Aspects and Performance Evaluation of Pole-Phase Changing Induction Machines," Energies, MDPI, vol. 15(19), pages 1-18, September.
    6. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    7. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings," Energies, MDPI, vol. 14(23), pages 1-21, December.
    8. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    9. Liu, Xinglong & Zhao, Fuquan & Hao, Han & Liu, Zongwei, 2023. "Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China," Energy, Elsevier, vol. 276(C).
    10. Aroua, Ayoub & Lhomme, Walter & Redondo-Iglesias, Eduardo & Verbelen, Florian, 2022. "Fuel saving potential of a long haul heavy duty vehicle equipped with an electrical variable transmission," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6974-:d:923099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.