IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4785-d1173821.html
   My bibliography  Save this article

Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5

Author

Listed:
  • Ruslans Smigins

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., LV 3001 Jelgava, Latvia)

  • Kristaps Sondors

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., LV 3001 Jelgava, Latvia)

  • Vilnis Pirs

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., LV 3001 Jelgava, Latvia)

  • Ilmars Dukulis

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., LV 3001 Jelgava, Latvia)

  • Gints Birzietis

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., LV 3001 Jelgava, Latvia)

Abstract

The aim of the study was to determine impact of commercially available hydrotreated vegetable oil (HVO) and its mixture (HVO5, where 5% ( v / v ) HVO and 95% ( v / v ) FDD) with diesel fuel (FDD) on the power, torque, fuel consumption, and exhaust gas composition of an atmospheric internal combustion diesel engine used in off-road applications. Diesel fuel was used as the comparative fuel. Testing was realized in a full-load mode on the KOHLER KDI 1903 M 3-cylinder diesel engine on a SIERRA CP-Engineering engine test bench. The AVL SESAM FTIR exhaust gas analytical system was used to determine exhaust gas emissions, while the AVL KMA Mobile fuel consumption measuring device was used to measure fuel consumption. Research showed that the lowest power and torque readings were obtained with FDD, while HVO showed a slightly higher result compared to the fossil diesel fuel. At the same time, the highest hourly fuel consumption was observed running on HVO5, while the lowest was observed with FDD. Increases in carbon monoxide (CO), carbon dioxide (CO 2 ), and nitrogen oxide (NO x ) emissions were observed for HVO5 compared to those of FDD. The CO content in emissions increased by an average of 3.0% using HVO and by an average of 36% using HVO5, but the NO x content in the emissions increased by an average of 3.0% using HVO and by an average of 8.8% using HVO5. The reduction by an average of 60% using HVO in emissions was found in the case of hydrocarbons (HC). Research confirmed that the physicochemical properties of HVO could leave an impact on the main engine performance parameters and exhaust emissions.

Suggested Citation

  • Ruslans Smigins & Kristaps Sondors & Vilnis Pirs & Ilmars Dukulis & Gints Birzietis, 2023. "Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5," Energies, MDPI, vol. 16(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4785-:d:1173821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joachim Demuynck & Roland Dauphin & Marta Yugo & Pablo Mendoza Villafuerte & Dirk Bosteels, 2021. "Advanced Emission Controls and Sustainable Renewable Fuels for Low Pollutant and CO 2 Emissions on a Diesel Passenger Car," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Shantanu Pardhi & Mohamed El Baghdadi & Oswin Hulsebos & Omar Hegazy, 2022. "Optimal Powertrain Sizing of Series Hybrid Coach Running on Diesel and HVO for Lifetime Carbon Footprint and Total Cost Minimisation," Energies, MDPI, vol. 15(19), pages 1-28, September.
    3. Singh, Devendra & Subramanian, K.A. & Garg, MO, 2018. "Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2947-2954.
    4. Andersson, Öivind & Börjesson, Pål, 2021. "The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    2. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    3. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    4. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    5. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    6. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    7. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    8. Robin Smit & Daniel William Kennedy, 2022. "Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    9. Alfredas Rimkus & Justas Žaglinskis & Saulius Stravinskas & Paulius Rapalis & Jonas Matijošius & Ákos Bereczky, 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-18, August.
    10. Ioana-Cristina Badea & Beatrice-Adriana Șerban & Ioana Anasiei & Dumitru Mitrică & Mihai Tudor Olaru & Andrey Rabin & Mariana Ciurdaș, 2023. "The Energy Storage Technology Revolution to Achieve Climate Neutrality," Energies, MDPI, vol. 17(1), pages 1, December.
    11. Alessandro Mancarella & Omar Marello, 2022. "Effect of Coolant Temperature on Performance and Emissions of a Compression Ignition Engine Running on Conventional Diesel and Hydrotreated Vegetable Oil (HVO)," Energies, MDPI, vol. 16(1), pages 1-27, December.
    12. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    13. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    14. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    15. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Pathways to achieve future CO2 emission reduction targets for bus transit networks," Energy, Elsevier, vol. 244(PB).
    16. Jan Verhaegh & Frank Kupper & Frank Willems, 2022. "Data-Driven Air-Fuel Path Control Design for Robust RCCI Engine Operation," Energies, MDPI, vol. 15(6), pages 1-25, March.
    17. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Yin, WanJun & Qin, Xuan, 2022. "Cooperative optimization strategy for large-scale electric vehicle charging and discharging," Energy, Elsevier, vol. 258(C).
    19. Stefano d’Ambrosio & Alessandro Mancarella & Andrea Manelli, 2022. "Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    20. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4785-:d:1173821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.