IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2018-d768211.html
   My bibliography  Save this article

Data-Driven Air-Fuel Path Control Design for Robust RCCI Engine Operation

Author

Listed:
  • Jan Verhaegh

    (Powertrains Department, TNO Automotive, 5700 AT Helmond, The Netherlands)

  • Frank Kupper

    (Powertrains Department, TNO Automotive, 5700 AT Helmond, The Netherlands)

  • Frank Willems

    (Powertrains Department, TNO Automotive, 5700 AT Helmond, The Netherlands
    Control Systems Technology, Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

Abstract

Reactivity controlled compression ignition (RCCI) is a highly efficient and clean combustion concept, which enables the use of a wide range of renewable fuels. Consequently, this promising dual fuel combustion concept is of great interest for realizing climate neutral future transport. RCCI is very sensitive for operating conditions and requires advanced control strategies to guarantee stable and safe operation. For real-world RCCI implementation, we face control challenges related to transients and varying ambient conditions. Currently, a multivariable air–fuel path controller that can guarantee robust RCCI engine operation is lacking. In this work, we present a RCCI engine controller, which combines static decoupling and a diagonal MIMO feedback controller. For control design, a frequency domain-based approach is presented, which explicitly deals with cylinder-to-cylinder variations using data-driven, cylinder-individual combustion models. This approach enables a systematic trade-off between fast and robust performance and gives clear design criteria for stable operation. The performance of the developed multivariable engine controller is demonstrated on a six-cylinder diesel-E85 RCCI engine. From experimental results, it is concluded that the RCCI engine controller accurately tracks the five desired combustion and air path parameters, simultaneously. For the studied transient cycle, this results in 12.8% reduction in NO x emissions and peak in-cylinder pressure rise rates are reduced by 3.8 bar/deg CA. Compared to open-loop control, the stable and safe operating range is increased from 25 ° C up to 35 ° C intake manifold temperature and maximal load range is increased by 14.7% up to BMEP = 14.8 bar.

Suggested Citation

  • Jan Verhaegh & Frank Kupper & Frank Willems, 2022. "Data-Driven Air-Fuel Path Control Design for Robust RCCI Engine Operation," Energies, MDPI, vol. 15(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2018-:d:768211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
    2. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
    3. Andersson, Öivind & Börjesson, Pål, 2021. "The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    2. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Pathways to achieve future CO2 emission reduction targets for bus transit networks," Energy, Elsevier, vol. 244(PB).
    3. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    4. Ruslans Smigins & Kristaps Sondors & Vilnis Pirs & Ilmars Dukulis & Gints Birzietis, 2023. "Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5," Energies, MDPI, vol. 16(12), pages 1-14, June.
    5. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    6. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    7. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    8. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    9. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    10. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    11. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Thanigaivelan Vadivelu & Lavanya Ramanujam & Rajesh Ravi & Shivaprasad K. Vijayalakshmi & Manoranjitham Ezhilchandran, 2022. "An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen," Energies, MDPI, vol. 16(1), pages 1-13, December.
    14. Yin, WanJun & Qin, Xuan, 2022. "Cooperative optimization strategy for large-scale electric vehicle charging and discharging," Energy, Elsevier, vol. 258(C).
    15. Asish K. Sarangi & Gordon P. McTaggart-Cowan & Colin P. Garner, 2022. "The Impact of Fuel Injection Timing and Charge Dilution Rate on Low Temperature Combustion in a Compression Ignition Engine," Energies, MDPI, vol. 16(1), pages 1-21, December.
    16. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    17. Robin Smit & Daniel William Kennedy, 2022. "Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    18. Fırat, Müjdat & Altun, Şehmus & Okcu, Mutlu & Varol, Yasin, 2022. "Comparison of ethanol/diesel fuel dual direct injection (DI2) strategy with reactivity controlled compression ignition (RCCI) in a diesel research engine," Energy, Elsevier, vol. 255(C).
    19. Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.
    20. Chen, Chen & Zhao, Xuan & Qi, Dandan & Yang, Kaixuan & Xu, Lei & Li, Tianjiao & Ying, Yaoyao & Liu, Dong, 2023. "Sooting transition diagnostics in counter-flow flames of C4 isomer fuels," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2018-:d:768211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.