IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925009250.html

Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control

Author

Listed:
  • Jia, Chunchun
  • Liu, Wei
  • He, Hongwen
  • Chau, K.T.

Abstract

Despite the significant advantages of fuel cell (FC) vehicles in reducing urban air pollution and extending driving range, effectively managing their internal energy systems remains a major challenge. To maximize the operational efficiency and lifespan of the FC system without compromising fuel economy, this paper proposes a novel predictive energy management paradigm guided by deep reinforcement learning. This strategy innovatively integrates driving intention speed prediction and health-aware control. Specifically, we developed a multi-input bi-directional long short-term memory (BiLSTM) predictor incorporating driving intentions (DI-BiLSTM) using the fuzzy C-means algorithm to enhance the prediction accuracy of future vehicle state trajectories. Downstream control decisions are executed through an improved deep deterministic policy gradient (DDPG) algorithm, which optimizes action space selection based on the degradation characteristics of the FC system. Additionally, during the training and validation phases of the energy management strategy (EMS), we utilized high-quality driving data collected from real bus routes using a high-performance Beidou integrated navigation system, replacing conventional standard driving cycles to enhance the strategy's generalization ability across different scenarios. The results indicate that, compared with conventional prediction model relying solely on historical speed data, the DI-BiLSTM improves prediction accuracy by at least 7.86 % over 3 s, 5 s, and 8 s prediction horizons. Compared with conventional DDPG-based EMS, the proposed EMS increases the average efficiency of the FC system by 32.18 % and extends its lifespan by 16.50 %. In terms of overall driving costs, the proposed EMS improves driving economy by 9.97 % compared with conventional DDPG-based EMS.

Suggested Citation

  • Jia, Chunchun & Liu, Wei & He, Hongwen & Chau, K.T., 2025. "Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009250
    DOI: 10.1016/j.apenergy.2025.126195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    2. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    3. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
    4. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    5. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    7. Yin, Cheng & Zeng, Xiangrui & Yin, Zhouping, 2024. "An improved data-driven predictive optimal control approach for designing hybrid electric vehicle energy management strategies," Applied Energy, Elsevier, vol. 375(C).
    8. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    9. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).
    11. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    12. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    13. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    15. Bao, Shuyue & Tang, Shifa & Sun, Ping & Wang, Tao, 2023. "LSTM-based energy management algorithm for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, He & Chu, Liang & Zhao, Di & Hou, Zhuoran & Guo, Zhiqi, 2025. "Sustainable energy-speed co-optimization for hybrid electric vehicles in dynamic car-following scenarios via multifunctional deep learning policy," Energy, Elsevier, vol. 334(C).
    2. Ahmed Nabil Farouk Abdelbaky & Aminu Babangida & Abdullahi Bala Kunya & Péter Tamás Szemes, 2025. "Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle," Energies, MDPI, vol. 18(14), pages 1-42, July.
    3. Bin Huang & Wenbin Yu & Minrui Ma & Xiaoxu Wei & Guangya Wang, 2025. "Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(14), pages 1-42, July.
    4. Dimitrios Stamatakis & Athanasios I. Tolis, 2025. "Coordinated Electric Vehicle Demand Management in the Unit Commitment Problem Integrated with Transmission Constraints," Energies, MDPI, vol. 18(16), pages 1-48, August.
    5. Guoyu Feng & Zhishu Feng & Peng Sun & Lulu Guo & Zhiyong Chen, 2025. "A Overview of Energy Management Strategies for Hybrid Power Systems," Energies, MDPI, vol. 18(17), pages 1-42, September.
    6. Guangxiao Shen & Quancheng Dong & Congfeng Tian & Wenbo Chen & Xiangjie Huang & Jinwei Wang, 2025. "Research on Control Strategy of Pure Electric Bulldozers Based on Vehicle Speed," Energies, MDPI, vol. 18(19), pages 1-18, September.
    7. Chenghao Lyu & Nuo Lei & Chaoyi Chen & Hao Zhang, 2025. "A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles," Energies, MDPI, vol. 18(13), pages 1-20, June.
    8. Maiquiel Schmidt de Oliveira & Flavio Trojan & Vilmar Steffen, 2025. "Model for Definition of Multi-Criteria Compensation by the ICCI (Inter-Criteria Compensation Index) in the Ranking of Electric Vehicles," Energies, MDPI, vol. 18(21), pages 1-20, October.
    9. Feng Wang & Qiongzhen Zhang, 2025. "The Development of China’s New Energy Vehicle Charging and Swapping Industry: Review and Prospects," Energies, MDPI, vol. 18(17), pages 1-24, August.
    10. Atif Rehman & Rimsha Ghias & Hammad Iqbal Sherazi, 2025. "Artificial Intelligence-Based Optimized Nonlinear Control for Multi-Source Direct Current Converters in Hybrid Electric Vehicle Energy Systems," Energies, MDPI, vol. 18(19), pages 1-26, September.
    11. Ishak Aris & Yanis Sadou & Abdelbaset Laib, 2025. "An Optimal Integral Fast Terminal Synergetic Control Scheme for a Grid-to-Vehicle and Vehicle-to-Grid Battery Electric Vehicle Charger Based on the Black-Winged Kite Algorithm," Energies, MDPI, vol. 18(13), pages 1-31, June.
    12. Muhammed Cavus & Huseyin Ayan & Margaret Bell & Dilum Dissanayake, 2025. "Advances in Energy Storage, AI Optimisation, and Cybersecurity for Electric Vehicle Grid Integration," Energies, MDPI, vol. 18(17), pages 1-33, August.
    13. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.
    14. Qi Jiang & Shusheng Xiong & Baoquan Sun & Ping Chen & Huipeng Chen & Shaopeng Zhu, 2025. "Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking," Energies, MDPI, vol. 18(15), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    2. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).
    3. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    4. Wang, Zhiguo & Wei, Hongqian & Xi, Yecheng & Xiao, Gongwei, 2024. "Data-driven energy utilization for plug-in hybrid electric bus with driving patten application and battery health considerations," Energy, Elsevier, vol. 310(C).
    5. Tang, Wenbin & Jiao, Xiaohong & Zhang, Yahui, 2025. "Hierarchical energy management control for connected hybrid electric vehicles in uncertain traffic scenarios," Energy, Elsevier, vol. 315(C).
    6. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Nie, Zhigen & Song, Hao & Lian, Yufeng & Shi, Zhuangfeng, 2025. "BiLSTM-ATTENTION-CNN predictive energy management based on ISSA optimization for intelligent fuel cell hybrid vehicle platoon," Energy, Elsevier, vol. 324(C).
    8. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    9. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    10. Tian, Weiyong & Zhang, Xiaohui & Zhou, Peng & Guo, Ruixue, 2025. "Review of energy management technologies for unmanned aerial vehicles powered by hydrogen fuel cell," Energy, Elsevier, vol. 323(C).
    11. Wang, Shuhan & Yao, Kun & Guo, Wei & Xu, Xiangyang & Liu, Yiqiang & Qian, Pengfei & Zhao, Junwei & Dong, Peng, 2025. "Approximate optimal energy management strategy for multi-speed series-parallel PHEV integrating global prediction and real-time control," Energy, Elsevier, vol. 335(C).
    12. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong, 2025. "Energy management in HDHEV with dual APUs: Enhancing soft actor-critic using clustered experience replay and multi-dimensional priority sampling," Energy, Elsevier, vol. 319(C).
    13. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    14. Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
    15. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    16. Yang, Hanqian & Zhou, Lefeng & Kang, Yuelin & Wang, Zicong & Liang, Jichao & Zhang, Fang, 2025. "Simplified-road-condition-based global optimization and calibration strategy for PHEV energy management," Energy, Elsevier, vol. 329(C).
    17. Nie, Zifei & Farzaneh, Hooman, 2022. "Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-netw," Energy, Elsevier, vol. 241(C).
    18. Liu, Zemin Eitan & Li, Yong & Zhou, Quan & Shuai, Bin & Hua, Min & Xu, Hongming & Xu, Lubing & Tan, Guikun & Li, Yanfei, 2025. "Real-time energy management for HEV combining naturalistic driving data and deep reinforcement learning with high generalization," Applied Energy, Elsevier, vol. 377(PA).
    19. Ma, Xiaokang & Liu, Hui & Han, Lijin & Yang, Ningkang & Li, Mingyi, 2025. "An real-time intelligent energy management based on deep reinforcement learning and model predictive control for hybrid electric vehicles considering battery life," Energy, Elsevier, vol. 324(C).
    20. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925009250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.