IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3600-d1697172.html
   My bibliography  Save this article

Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review

Author

Listed:
  • Bin Huang

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Wenbin Yu

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Minrui Ma

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Xiaoxu Wei

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Guangya Wang

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

Abstract

The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between the internal combustion engine and the electric motor. While rule-based and optimization methods have formed the foundation of EMS, their performance constraints under dynamic conditions have prompted researchers to explore artificial intelligence (AI)-based solutions. This paper systematically reviews four main AI-based EMS approaches—the knowledge-driven, data-driven, reinforcement learning, and hybrid methods—highlighting their theoretical foundations, core technologies, and key applications. The integration of AI has led to notable benefits, such as improved fuel efficiency, enhanced emission control, and greater system adaptability. However, several challenges remain, including generalization to diverse driving conditions, constraints in real-time implementation, and concerns related to data-driven interpretability. The review identifies emerging trends in hybrid methods, which combine AI and conventional optimization approaches to create more adaptive and effective HEV energy management systems. The paper concludes with a discussion of future research directions, focusing on safety, system resilience, and the role of AI in autonomous decision-making.

Suggested Citation

  • Bin Huang & Wenbin Yu & Minrui Ma & Xiaoxu Wei & Guangya Wang, 2025. "Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(14), pages 1-42, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3600-:d:1697172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    2. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    3. Zhao, Junwei & Xu, Xiangyang & Dong, Peng & Liu, Xuewu & Wang, Shuhan & Qi, Hongzhong & Liu, Yanfang, 2024. "A novel EMS design framework for SPHTs based on instantaneous layer, driving event layer, and driving cycle layer," Energy, Elsevier, vol. 307(C).
    4. Wang, Hanchen & Arjmandzadeh, Ziba & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2024. "FlexNet: A warm start method for deep reinforcement learning in hybrid electric vehicle energy management applications," Energy, Elsevier, vol. 288(C).
    5. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    6. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    7. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Fan Wang & Yina Hong & Xiaohuan Zhao, 2025. "Research and Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 18(11), pages 1-28, May.
    9. Shuxian Li & Minghui Hu & Changchao Gong & Sen Zhan & Datong Qin, 2018. "Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means," Energies, MDPI, vol. 11(6), pages 1-16, June.
    10. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    11. Liu, Teng & Wang, Bo & Yang, Chenglang, 2018. "Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning," Energy, Elsevier, vol. 160(C), pages 544-555.
    12. Lin Liu & Youguang Guo & Wenliang Yin & Gang Lei & Jianguo Zhu, 2022. "Design and Optimization Technologies of Permanent Magnet Machines and Drive Systems Based on Digital Twin Model," Energies, MDPI, vol. 15(17), pages 1-26, August.
    13. Shenghui Lei & Yanying Li & Mengnan Liu & Wenshuo Li & Tenglong Zhao & Shuailong Hou & Liyou Xu, 2025. "Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors," Energies, MDPI, vol. 18(2), pages 1-27, January.
    14. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    15. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
    16. Wang, Hanchen & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2023. "A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle," Energy, Elsevier, vol. 266(C).
    17. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    18. Joseph Omakor & Mohamad Alzayed & Hicham Chaoui, 2024. "Particle Swarm-Optimized Fuzzy Logic Energy Management of Hybrid Energy Storage in Electric Vehicles," Energies, MDPI, vol. 17(9), pages 1-19, April.
    19. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    20. Tong, He & Chu, Liang & Wang, Zixu & Zhao, Di, 2025. "Adaptive Pulse-and-Glide for synergistic optimization of driving behavior and energy management in hybrid powertrain," Energy, Elsevier, vol. 330(C).
    21. Zhang, Dehai & Li, Junhui & Guo, Ningyuan & Liu, Yonggang & Shen, Shiquan & Wei, Fuxing & Chen, Zheng & Zheng, Jia, 2024. "Adaptive deep reinforcement learning energy management for hybrid electric vehicles considering driving condition recognition," Energy, Elsevier, vol. 313(C).
    22. Álvaro Gómez-Barroso & Iban Vicente Makazaga & Ekaitz Zulueta, 2024. "Optimizing Hybrid Electric Vehicle Performance: A Detailed Overview of Energy Management Strategies," Energies, MDPI, vol. 18(1), pages 1-32, December.
    23. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    24. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    25. Dawei Zhong & Bolan Liu & Liang Liu & Wenhao Fan & Jingxian Tang, 2025. "Artificial Intelligence Algorithms for Hybrid Electric Powertrain System Control: A Review," Energies, MDPI, vol. 18(8), pages 1-30, April.
    26. Nikolaos Fesakis & Georgios Falekas & Ilias Palaiologou & Georgia Eirini Lazaridou & Athanasios Karlis, 2024. "Integration and Optimization of Multisource Electric Vehicles: A Critical Review of Hybrid Energy Systems, Topologies, and Control Algorithms," Energies, MDPI, vol. 17(17), pages 1-42, August.
    27. Xin Fu & Zengbin Fan & Shangfeng Jiang & Ashley Fly & Rui Chen & Yong Han & An Xie, 2024. "Durability Oriented Fuel Cell Electric Vehicle Energy Management Strategies Based on Vehicle Drive Cycles," Energies, MDPI, vol. 17(22), pages 1-17, November.
    28. Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
    29. Jia, Chunchun & Liu, Wei & He, Hongwen & Chau, K.T., 2025. "Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control," Applied Energy, Elsevier, vol. 394(C).
    30. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    31. Lu, Ziwang & Tian, He & sun, Yiwen & Li, Runfeng & Tian, Guangyu, 2023. "Neural network energy management strategy with optimal input features for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    32. Li, Jiajia & Yi, Qian & Zhu, Pengxing & Hu, Jianjun & Yi, Shuping, 2025. "Data-driven co-optimization method of eco-adaptive cruise control for plug-in hybrid electric vehicles considering risky driving behaviors," Applied Energy, Elsevier, vol. 392(C).
    33. Jonathan Andrés Basantes & Daniela Estefanía Paredes & Jacqueline Rosario Llanos & Diego Edmundo Ortiz & Claudio Danilo Burgos, 2023. "Energy Management System (EMS) Based on Model Predictive Control (MPC) for an Isolated DC Microgrid," Energies, MDPI, vol. 16(6), pages 1-22, March.
    34. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Apostolou, 2025. "A Literature Review on Energy Management Systems and Their Application on Harbour Activities," Energies, MDPI, vol. 18(18), pages 1-34, September.
    2. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Zhong & Bolan Liu & Liang Liu & Wenhao Fan & Jingxian Tang, 2025. "Artificial Intelligence Algorithms for Hybrid Electric Powertrain System Control: A Review," Energies, MDPI, vol. 18(8), pages 1-30, April.
    2. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    3. Guoyu Feng & Zhishu Feng & Peng Sun & Lulu Guo & Zhiyong Chen, 2025. "A Overview of Energy Management Strategies for Hybrid Power Systems," Energies, MDPI, vol. 18(17), pages 1-42, September.
    4. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    5. Fan Wang & Yina Hong & Xiaohuan Zhao, 2025. "Research and Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 18(11), pages 1-28, May.
    6. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Iqbal, Najam & Wang, Hu & Zheng, Zunqing & Yao, Mingfa, 2024. "Reinforcement learning-based heuristic planning for optimized energy management in power-split hybrid electric heavy duty vehicles," Energy, Elsevier, vol. 302(C).
    8. Alessia Musa & Pier Giuseppe Anselma & Giovanni Belingardi & Daniela Anna Misul, 2023. "Energy Management in Hybrid Electric Vehicles: A Q-Learning Solution for Enhanced Drivability and Energy Efficiency," Energies, MDPI, vol. 17(1), pages 1-20, December.
    9. Álvaro Gómez-Barroso & Iban Vicente Makazaga & Ekaitz Zulueta, 2024. "Optimizing Hybrid Electric Vehicle Performance: A Detailed Overview of Energy Management Strategies," Energies, MDPI, vol. 18(1), pages 1-32, December.
    10. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    11. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    12. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    13. Di Xue & Haisheng Wang & Junnian Wang & Changyang Guan & Yiru Xia, 2024. "Equivalent Cost Minimization Strategy for Plug-In Hybrid Electric Bus with Consideration of an Inhomogeneous Energy Price and Battery Lifespan," Sustainability, MDPI, vol. 17(1), pages 1-20, December.
    14. Tong, He & Chu, Liang & Zhang, Yuanjian & Zhao, Di & Hu, Jincheng & Xie, Zhihao & Liu, Ming, 2024. "Towards sustainable high-speed cruising: Optimizing energy efficiency of plug-in hybrid electric vehicle via intelligent pulse-and-glide strategy," Energy, Elsevier, vol. 311(C).
    15. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.
    16. Liu, Zemin Eitan & Li, Yong & Zhou, Quan & Shuai, Bin & Hua, Min & Xu, Hongming & Xu, Lubing & Tan, Guikun & Li, Yanfei, 2025. "Real-time energy management for HEV combining naturalistic driving data and deep reinforcement learning with high generalization," Applied Energy, Elsevier, vol. 377(PA).
    17. Yin, Cheng & Zeng, Xiangrui & Yin, Zhouping, 2024. "An improved data-driven predictive optimal control approach for designing hybrid electric vehicle energy management strategies," Applied Energy, Elsevier, vol. 375(C).
    18. Lijin Han & Wenhui Shi & Ningkang Yang, 2025. "An Adaptive Energy Management Strategy for Off-Road Hybrid Tracked Vehicles," Energies, MDPI, vol. 18(6), pages 1-15, March.
    19. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    20. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3600-:d:1697172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.