IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225014094.html
   My bibliography  Save this article

Parallel structure-based decentralized model predictive control of vehicle PEMFC anode circulation system

Author

Listed:
  • Qing, Hongyuan
  • Feng, Yuan
  • Zhang, Caizhi
  • Gao, Jinwu
  • Chen, Hao
  • Hao, Dong
  • Yu, Pengcheng
  • Simonovic, Milos

Abstract

Excessive pressure difference between the cathode and anode and insufficient hydrogen supply in proton exchange membrane fuel cell (PEMFC) can affect their stability, reliability and operating life. Therefore, in this paper, a decentralized model predictive controller (DMPC) based on the parallel structure of the ejector and hydrogen circulation pump is proposed to resist the disturbance of anode pressure and flow rate caused by current variation and purging. In addition, this structure can make up for the defect of the single ejector structure with too narrow operating range. Simulation results show that the proposed DMPC control strategy has better pressure stability and robustness than the traditional model predictive controller (MPC), and can achieve the ideal hydrogen excess ratio faster under low load conditions with step load current, variable reference and purge disturbance. In particular, even under loading current and purge disturbance condition of PEMFC hybrid vehicles, the DMPC with purge disturbance model has better pressure tracking performance and control stability, with an average absolute error of 56.69Pa and a root-mean-square error of 722.82Pa, which is 6.65 % lower than that of the MPC controller.

Suggested Citation

  • Qing, Hongyuan & Feng, Yuan & Zhang, Caizhi & Gao, Jinwu & Chen, Hao & Hao, Dong & Yu, Pengcheng & Simonovic, Milos, 2025. "Parallel structure-based decentralized model predictive control of vehicle PEMFC anode circulation system," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014094
    DOI: 10.1016/j.energy.2025.135767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guerrero Moreno, Nayibe & Cisneros Molina, Myriam & Gervasio, Dominic & Pérez Robles, Juan Francisco, 2015. "Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 897-906.
    2. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    3. Yin, Ren-Jie & Zeng, Wen-Chao & Bai, Fan & Chen, Li & Tao, Wen-Quan, 2024. "Study on the effects of manifold structure on the gas flow distribution uniformity of anode of PEMFC stack with 140-cell," Renewable Energy, Elsevier, vol. 221(C).
    4. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    5. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    6. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    7. Zhang, Yuqi & Li, Yu & Zhang, Caizhi & Yang, Yunzi & Yu, Xingzi & Niu, Tong & Wang, Lei & Wang, Gucheng, 2024. "Intelligent diagnosis of proton exchange membrane fuel cell water states based on flooding-specificity experiment and deep learning method," Renewable Energy, Elsevier, vol. 222(C).
    8. Yu, Xingzi & Zhang, Caizhi & Li, Mengxiao & Wang, Gucheng & Tu, Zhengkai & Yu, Tao & Dong, Hui & Zhao, Fuqiang, 2024. "Thermal management of an open-cathode PEMFC based on constraint generalized predictive control and optimized strategy," Renewable Energy, Elsevier, vol. 220(C).
    9. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    10. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavizade, Mirsaeed & Garmabdari, Rasoul & Bai, Feifei & Taghizadeh, Foad & Sanjari, Mohammad J. & Alahyari, Arman & Hossain, Md. Alamgir & Mahmoudian, Ali & Lu, Junwei, 2025. "A Bayesian approach to modeling fast chargers functionality for grid frequency support," Applied Energy, Elsevier, vol. 384(C).
    2. Wang, Zongfei & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2025. "Home or workplace charging? Spatio-temporal flexibility of electric vehicles within Swiss electricity system," Energy, Elsevier, vol. 320(C).
    3. Yang, Weijia & Sparrow, Sarah N. & Wallom, David C.H., 2024. "A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods," Applied Energy, Elsevier, vol. 368(C).
    4. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    5. Wenshang Chen & Yang Liu & Ben Chen, 2022. "Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles," Energies, MDPI, vol. 15(7), pages 1-18, March.
    6. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    7. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    8. Ming Zhao & Wenbin Wang & Xiaochun Zhu & Mengxue Cao & Zhengyuan Gao & Ke Sun & Shuzhan Bai & Guoxiang Li, 2023. "Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine," Energies, MDPI, vol. 16(13), pages 1-20, June.
    9. Tang, Telu & Yang, Xiangguo & Li, Muheng & Li, Xin & Huang, Hai & Guan, Cong & Huang, Jiangfan & Wang, Yufan & Zhou, Chaobin, 2025. "Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 317(C).
    10. Jong-Wook Kim & Heungju Ahn & Hyeon Cheol Seo & Sang Cheol Lee, 2022. "Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS)," Energies, MDPI, vol. 15(8), pages 1-15, April.
    11. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    12. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    13. Dashti, Isar & Asghari, Saeed & Goudarzi, Mohammad & Meyer, Quentin & Mehrabani-Zeinabad, Arjomand & Brett, Dan J.L., 2019. "Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model," Energy, Elsevier, vol. 179(C), pages 173-185.
    14. Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on the cold-start performance of a gas heating assisted air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 234(C).
    15. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    16. Tang, Wenbin & Jiao, Xiaohong & Zhang, Yahui, 2025. "Hierarchical energy management control for connected hybrid electric vehicles in uncertain traffic scenarios," Energy, Elsevier, vol. 315(C).
    17. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Fan, Lixin & Tu, Zhengkai & Cai, Shanshan & Miao, Bin & Ding, Ovi Lian & Chen, Yongtao & Chan, Siew Hwa, 2025. "Design principles and analysis of manifold design in a large-scale PEMFC stack," Energy, Elsevier, vol. 319(C).
    19. Tu, Xikai & Lv, Jin & Wu, Jin & Luo, Xiaobing & Tu, Zhengkai, 2025. "Experimental investigation of a novel open cathode air-cooled fuel cell stack design featuring simultaneous inlet blowing and outlet suction," Energy, Elsevier, vol. 314(C).
    20. shi, Lei & Tang, Xingwang & Xu, Sichuan & Liu, Ze, 2024. "Numerical research on liquid water removal mechanism and the influence of pore structure on water removal rate based on real pore GDL structure during shutdown purge of fuel cell," Energy, Elsevier, vol. 288(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.