An Unsupervised Fault Warning Method Based on Hybrid Information Gain and a Convolutional Autoencoder for Steam Turbines
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huang, Bo & Peng, Yun-Hong & Hu, Li-Sheng & Liang, Xiao-Chi, 2024. "Incipient fault detection approach based on piecewise linear shape-based global embedding for steam turbine plants," Applied Energy, Elsevier, vol. 370(C).
- Li, Xingshuo & Liu, Jinfu & Bai, Mingliang & Li, Jiajia & Li, Xianling & Yan, Peigang & Yu, Daren, 2021. "An LSTM based method for stage performance degradation early warning with consideration of time-series information," Energy, Elsevier, vol. 226(C).
- Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salman Khalid & Muhammad Muzammil Azad & Heung Soo Kim, 2025. "A Generalized Autonomous Power Plant Fault Detection Model Using Deep Feature Extraction and Ensemble Machine Learning," Mathematics, MDPI, vol. 13(3), pages 1-19, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
- Ming Cheng & Qiang Zhang & Yue Cao, 2024. "An Early Warning Model for Turbine Intermediate-Stage Flux Failure Based on an Improved HEOA Algorithm Optimizing DMSE-GRU Model," Energies, MDPI, vol. 17(15), pages 1-16, July.
- Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
- Xin, Yong-Lin & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2024. "An efficient yet accurate optimization algorithm for thermal systems integrating heat current method and generalized Benders decomposition," Energy, Elsevier, vol. 304(C).
- Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
- Chen, Chen & Zhao, Chenyu & Liu, Ming & Wang, Chaoyang & Yan, Junjie, 2024. "Enhancing the load cycling rate of subcritical coal-fired power plants: A novel control strategy based on data-driven feedwater active regulation," Energy, Elsevier, vol. 312(C).
- Wojciech Włodarski & Marian Piwowarski, 2024. "A Model Modification for a Microturbine Set with Partial Admission Stages," Energies, MDPI, vol. 17(8), pages 1-16, April.
- Xu, Zifei & Bashir, Musa & Yang, Yang & Wang, Xinyu & Wang, Jin & Ekere, Nduka & Li, Chun, 2022. "Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism," Renewable Energy, Elsevier, vol. 199(C), pages 21-34.
More about this item
Keywords
steam turbine; convolutional autoencoder; information gain; fault warning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4098-:d:1458537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.