IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006472.html
   My bibliography  Save this article

An LSTM based method for stage performance degradation early warning with consideration of time-series information

Author

Listed:
  • Li, Xingshuo
  • Liu, Jinfu
  • Bai, Mingliang
  • Li, Jiajia
  • Li, Xianling
  • Yan, Peigang
  • Yu, Daren

Abstract

Renewable energy accommodation in power grids leads to frequent load changes in power plants. Therefore, an efficient monitoring method is necessary to increase the operational reliability of thermal power plants. As extant methods are only efficient under the stable state and perform poorly in the dynamic operation process, this paper proposes a novel method that comprehensively considers the dynamic properties and feature selection to achieve a sensitive and accurate early warning for stage performance degradation. First, the core demands for an ideal early warning are investigated through an analysis of the traditional method. Based on the findings, a frequent pattern model-based early warning method is proposed. Considering the stage characteristics, the features are determined by the fusion of data and mechanism analysis, and the corresponding model is established using a long short-term memory (LSTM) network. The feasibility and validity of this method are experimentally verified and its detection accuracy exceeds 99%. Furthermore, comparison experiments are conducted from the perspective of model characterization and feature selection. The results highlight the importance of time-series information, given that the features exhibit time-dependent characteristics. Moreover, additional features are not necessarily advantageous and a reasonable balance between effective information input and interference is crucial.

Suggested Citation

  • Li, Xingshuo & Liu, Jinfu & Bai, Mingliang & Li, Jiajia & Li, Xianling & Yan, Peigang & Yu, Daren, 2021. "An LSTM based method for stage performance degradation early warning with consideration of time-series information," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006472
    DOI: 10.1016/j.energy.2021.120398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Li-hua & Yu, Jing-wen & Li, Yong, 2016. "Study on the determination method of the normal value of relative internal efficiency of the last stage group of steam turbine," Energy, Elsevier, vol. 98(C), pages 101-107.
    2. Hu, Pengfei & Cao, Lihua & Su, Jingkai & Li, Qi & Li, Yong, 2020. "Distribution characteristics of salt-out particles in steam turbine stage," Energy, Elsevier, vol. 192(C).
    3. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    2. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    3. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    4. Xu, Zifei & Bashir, Musa & Yang, Yang & Wang, Xinyu & Wang, Jin & Ekere, Nduka & Li, Chun, 2022. "Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism," Renewable Energy, Elsevier, vol. 199(C), pages 21-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    2. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    3. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    4. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    5. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    6. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    7. Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
    8. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    9. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    10. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    11. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    12. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    13. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    14. Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
    15. Kaiyan Wang & Haodong Du & Rong Jia & Hongtao Jia, 2022. "Performance Comparison of Bayesian Deep Learning Model and Traditional Bayesian Neural Network in Short-Term PV Interval Prediction," Sustainability, MDPI, vol. 14(19), pages 1-27, October.
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    17. Yuhao Zhang & Ting Li & Tianyi Ma & Dongsheng Yang & Xiaolong Sun, 2024. "Short-Term Photovoltaic Power Prediction Based on Extreme Learning Machine with Improved Dung Beetle Optimization Algorithm," Energies, MDPI, vol. 17(4), pages 1-24, February.
    18. Nonthawat Khortsriwong & Promphak Boonraksa & Terapong Boonraksa & Thipwan Fangsuwannarak & Asada Boonsrirat & Watcharakorn Pinthurat & Boonruang Marungsri, 2023. "Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant," Energies, MDPI, vol. 16(5), pages 1-21, February.
    19. Medine Colak & Mehmet Yesilbudak & Ramazan Bayindir, 2020. "Daily Photovoltaic Power Prediction Enhanced by Hybrid GWO-MLP, ALO-MLP and WOA-MLP Models Using Meteorological Information," Energies, MDPI, vol. 13(4), pages 1-19, February.
    20. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.