IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2024i1p130-d1558015.html
   My bibliography  Save this article

Remaining Useful Life Prediction of Turbofan Engine in Varied Operational Conditions Considering Change Point: A Novel Deep Learning Approach with Optimum Features

Author

Listed:
  • Subrata Rath

    (Statistical Quality Control and Operations Research Unit, Indian Statistical Institute, Pune 411038, India)

  • Deepjyoti Saha

    (Department of Mathematics & Computing, Indian Institute of Technology (ISM), Dhanbad 826004, India)

  • Subhashis Chatterjee

    (Department of Mathematics & Computing, Indian Institute of Technology (ISM), Dhanbad 826004, India)

  • Ashis Kumar Chakraborty

    (Statistical Quality Control and Operations Research Unit, Indian Statistical Institute, Kolkata 700108, India)

Abstract

In the era of Internet of Things (IoT), remaining useful life (RUL) prediction of turbofan engines is crucial. Various deep learning (DL) techniques proposed recently to predict RUL for such systems have remained silent on the effect of environmental changes on machine reliability. This paper aims (i) to identify the change point in RUL trends and patterns (ii) to select the most relevant features, and (iii) to predict RUL with the selected features and identified change points. A two-stage feature-selection algorithm was developed, followed by a change point identification mechanism, and finally, a Bidirectional Long Short-Term Memory (BiLSTM) model was designed to predict RUL. The study utilizes NASA’s C-MAPSS data set to check the performance of the proposed methodology. The findings affirm that the proposed method enhances the stability of DL models, resulting in a 27.8% improvement in RUL prediction compared to popular and cutting-edge DL models.

Suggested Citation

  • Subrata Rath & Deepjyoti Saha & Subhashis Chatterjee & Ashis Kumar Chakraborty, 2024. "Remaining Useful Life Prediction of Turbofan Engine in Varied Operational Conditions Considering Change Point: A Novel Deep Learning Approach with Optimum Features," Mathematics, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:130-:d:1558015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/1/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/1/130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Liang & Wang, Huawei & Xu, Shanshan, 2023. "Aero-engine prognosis strategy based on multi-scale feature fusion and multi-task parallel learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    4. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Zhuang, Liangliang & Xu, Ancha & Wang, Yijun & Tang, Yincai, 2024. "Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process," European Journal of Operational Research, Elsevier, vol. 319(3), pages 877-890.
    6. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Chen, Zhen & Li, Yaping & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2021. "Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Wang, Chen & Zhang, Liming & Chen, Ling & Tan, Tian & Zhang, Cong, 2025. "Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    11. Gao, Pengjie & Wang, Junliang & Shi, Ziqi & Ming, Weiwei & Chen, Ming, 2024. "Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Gao, Zhan & Jiang, Weixiong & Wu, Jun & Dai, Tianjiao & Zhu, Haiping, 2024. "Nonlinear slow-varying dynamics-assisted temporal graph transformer network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    13. Yu, Wennian & Tu, Wenbing & Kim, Il Yong & Mechefske, Chris, 2021. "A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Liu, Yang & Zhou, Guangda & Zhao, Shujian & Li, Liang & Xie, Wenhua & Su, Bengan & Li, Yongwei & Zhao, Zhen, 2025. "A novel two-stage method via adversarial strategy for remaining useful life prediction of bearings under variable conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    18. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2020. "Mis-specification analysis of Wiener degradation models by using f-divergence with outliers," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Wang, Yu & Liu, Qiufa & Lu, Wenjian & Peng, Yizhen, 2023. "A general time-varying Wiener process for degradation modeling and RUL estimation under three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:130-:d:1558015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.