IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p54-d1304948.html
   My bibliography  Save this article

Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis

Author

Listed:
  • Rajitha Lakshan Rupasinghe

    (Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Colombo 10250, Sri Lanka)

  • Priyan Perera

    (Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Colombo 10250, Sri Lanka)

  • Rangika Bandara

    (Department of Zoology and Environmental Management, University of Kelaniya, Colombo 11300, Sri Lanka)

  • Hiran Amarasekera

    (Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Colombo 10250, Sri Lanka)

  • Richard Vlosky

    (Louisiana Forest Products Development Center, Louisiana State University, Baton Rouge, LA 70803, USA)

Abstract

There is a widespread global shift toward renewable energy sources, where the emphasis is on enhancing the utilization of renewable energy due to the rising costs associated with fossil fuels. In this light, biomass pellets made from woody and non-woody biomass and blends have gained increased attention. Extensive research has been conducted globally to enhance the quality of biomass pellets and to explore the potential to combine woody biomass with other non-woody forms of biomass in biomass pellet production. The heterogeneity of the raw materials used and resulting properties of the biomass pellets have led to the establishment of internationally recognized benchmarks such as the International Organization for Standardization (ISO) 17225 standard to regulate pellet quality. In this article, the key mechanical, physical, chemical, and energy properties of pellets made of different non-woody herbaceous biomass are investigated, and the available test values for such properties of the pellets were meta-analyzed. A comparison of the properties of these pellets with the relevant standards was also performed. A meta-analysis of studies on biomass pellet production was conducted via a comprehensive Systematic Literature Review (SLR). The SLR focuses on determining and analyzing the average values for the key physical properties of biomass pellets using woody biomass as a component in concert with other biomass materials. In addition, the optimal range of mixtures of woody and non-woody biomass was reviewed to produce biomass pellets with potential acceptance in the marketplace. The majority of studies included in the SLR concentrate on pellets made from a mixture of biomass materials. The results show that the average values for wood/non-wood mixtures such as pellet diameter, pellet length, moisture content, ash content, fine particle content, gross calorific value, and bulk density were found to adhere to the ISO standards. However, the average mechanical durability fell short of meeting the requirements of the standards. Additional comparisons were nitrogen, sulfur, volatile matter, and fixed carbon content. The findings in this meta-analysis could be useful in directing future research focused on producing high-quality and efficient biomass pellets derived from biomass blends and mixtures.

Suggested Citation

  • Rajitha Lakshan Rupasinghe & Priyan Perera & Rangika Bandara & Hiran Amarasekera & Richard Vlosky, 2023. "Insights into Properties of Biomass Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis," Energies, MDPI, vol. 17(1), pages 1-38, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:54-:d:1304948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    2. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    3. Erlich, Catharina & Fransson, Torsten H., 2011. "Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study," Applied Energy, Elsevier, vol. 88(3), pages 899-908, March.
    4. Cardoen, Dennis & Joshi, Piyush & Diels, Ludo & Sarma, Priyangshu M. & Pant, Deepak, 2015. "Agriculture biomass in India: Part 1. Estimation and characterization," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 39-48.
    5. Ríos-Badrán, Inés M. & Luzardo-Ocampo, Iván & García-Trejo, Juan Fernando & Santos-Cruz, José & Gutiérrez-Antonio, Claudia, 2020. "Production and characterization of fuel pellets from rice husk and wheat straw," Renewable Energy, Elsevier, vol. 145(C), pages 500-507.
    6. Rebecca C. A. Tobi & Francesca Harris & Ritu Rana & Kerry A. Brown & Matthew Quaife & Rosemary Green, 2019. "Sustainable Diet Dimensions. Comparing Consumer Preference for Nutrition, Environmental and Social Responsibility Food Labelling: A Systematic Review," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    8. Yuriy Bilan & Serhiy Kozmenko & Inna Makarenko, 2023. "Recent Advances in the Energy Market Development: Current Challenges and Perspectives of Energy Crises in Academia," Energies, MDPI, vol. 16(5), pages 1-6, February.
    9. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    2. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    4. Lam, Pak Sui & Lam, Pak Yiu & Sokhansanj, Shahab & Lim, C. Jim & Bi, Xiaotao T. & Stephen, James D. & Pribowo, Amadeus & Mabee, Warren E., 2015. "Steam explosion of oil palm residues for the production of durable pellets," Applied Energy, Elsevier, vol. 141(C), pages 160-166.
    5. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    6. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    7. Solarte-Toro, Juan Camilo & González-Aguirre, Jose Andrés & Poveda Giraldo, Jhonny Alejandro & Cardona Alzate, Carlos A., 2021. "Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    9. Anukam, Anthony & Berghel, Jonas & Henrikson, Gunnar & Frodeson, Stefan & Ståhl, Magnus, 2021. "A review of the mechanism of bonding in densified biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    11. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    12. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Oana Raluca Corduneanu & Emanuel Petru Dumitrachi & Eniko Kovacs & Daniela Alexandra Scurtu & Oana Cadar & Anca Becze & Marin Senila & Marius Roman & , 2020. "Sustainable Biomass Pellets Production Using Vineyard Wastes," Agriculture, MDPI, vol. 10(11), pages 1-21, October.
    13. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    14. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    15. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    16. Sergio Jaimes Rueda & Bruna Rego de Vasconcelos & Xavier Duret & Jean-Michel Lavoie, 2022. "Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill," Energies, MDPI, vol. 15(9), pages 1-20, April.
    17. Ronja Teschner & Jessica Ruppen & Basil Bornemann & Rony Emmenegger & Lucía Aguirre Sánchez, 2021. "Mapping Sustainable Diets: A Comparison of Sustainability References in Dietary Guidelines of Swiss Food Governance Actors," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    18. Abdulmumini, Murtala M. & Zigan, Stefan & Bradley, Michael S.A. & Lestander, Torbjörn A., 2020. "Fuel pellet breakage in pneumatic transport and durability tests," Renewable Energy, Elsevier, vol. 157(C), pages 911-919.
    19. Rachel Corry & Jessica Holt & Alexa J. Lamm & Abigail Borron, 2023. "Do You Really Want to Know? Exploring Desired Information Transparency for Local Food Products," Sustainability, MDPI, vol. 15(24), pages 1-16, December.
    20. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:54-:d:1304948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.