IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p718-d1028402.html
   My bibliography  Save this article

A Study on Utilization of High-Ratio Biodiesel and Pure Biodiesel in Advanced Vehicle Technologies

Author

Listed:
  • Iman K. Reksowardojo

    (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
    Department of Mechanical Engineering, Pertamina University, Jakarta 12220, Indonesia)

  • Hari Setiapraja

    (National Research and Innovation Agency, South Tangerang 15314, Indonesia)

  • Mokhtar

    (National Research and Innovation Agency, South Tangerang 15314, Indonesia)

  • Siti Yubaidah

    (National Research and Innovation Agency, South Tangerang 15314, Indonesia)

  • Dieni Mansur

    (National Research and Innovation Agency, South Tangerang 15314, Indonesia)

  • Agnes K. Putri

    (Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia)

Abstract

An experimental study was conducted to investigate the effect of high-ratio biodiesel and pure biodiesel on the emissions and performance of Euro4-compliant vehicles. The tested fuels were diesel fuel, biodiesel with a ratio of 30% by volume (B30), biodiesel with a ratio of 50% (B50) and pure biodiesel FAME (B100), while the tested vehicle is of the Euro4-compliant standard currently available in the Indonesian market. In this study, tests on emissions, performance and fuel economy were conducted based on the international standard of the UN ECE R83-05, adopted as UN ECE R-85 and UN ECE R-101 respectively. This study also investigated the effect of the carbon-to-hydrogen ratio on the carbon balance formula. Here, the paper proposed a modified R101 carbon balance formula to calculate the fuel economy for high-ratio and pure biodiesel fuels. The results showed that biodiesel had lower CO, HC and particulate emissions, while NOx emissions were higher compared to diesel fuel. However, pure biodiesel was within the limits imposed by the Euro4 emissions standard. Maximum power output with high-ratio biodiesel decreased by up to 10% with B100. The fuel economy of the B30, B50 and B100 biodiesels was lower than diesel fuel by 3%, 7% and 11%, respectively, based on the modified carbon balance formula for high-ratio biodiesel fuel.

Suggested Citation

  • Iman K. Reksowardojo & Hari Setiapraja & Mokhtar & Siti Yubaidah & Dieni Mansur & Agnes K. Putri, 2023. "A Study on Utilization of High-Ratio Biodiesel and Pure Biodiesel in Advanced Vehicle Technologies," Energies, MDPI, vol. 16(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:718-:d:1028402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iman K. Reksowardojo & Hari Setiapraja & Rizqon Fajar & Edi Wibowo & Dadan Kusdiana, 2020. "An Investigation of Laboratory and Road Test of Common Rail Injection Vehicles Fueled with B20 Biodiesel," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Dimitrios N Tziourtzioumis & Anastassios M Stamatelos, 2017. "Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion," Energies, MDPI, vol. 10(7), pages 1-15, July.
    3. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    4. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    5. Janusz Chojnowski & Mirosław Karczewski, 2022. "Influence of the Working Parameters of the Chassis Dynamometer on the Assessment of Tuning of Dual-Fuel Systems," Energies, MDPI, vol. 15(13), pages 1-18, July.
    6. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    7. Vu H. Nguyen & Minh Q. Duong & Kien T. Nguyen & Thin V. Pham & Phuong X. Pham, 2020. "An Extensive Analysis of Biodiesel Blend Combustion Characteristics under a Wide-Range of Thermal Conditions of a Cooperative Fuel Research Engine," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Bajerlein & Wojciech Karpiuk & Rafał Smolec, 2021. "Use of Gas Desorption Effect in Injection Systems of Diesel Engines," Energies, MDPI, vol. 14(1), pages 1-22, January.
    2. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    3. Yavuz Eray Altun & Osman Akın Kutlar, 2024. "Energy Management Systems’ Modeling and Optimization in Hybrid Electric Vehicles," Energies, MDPI, vol. 17(7), pages 1-39, April.
    4. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    5. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    6. Mariusz Niekurzak, 2021. "Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle," Energies, MDPI, vol. 14(24), pages 1-18, December.
    7. Tomasz Janusz Teleszewski & Andrzej Gajewski, 2020. "The Latest Method for Surface Tension Determination: Experimental Validation," Energies, MDPI, vol. 13(14), pages 1-10, July.
    8. Srinivasan Senthil Kumar & K. Rajan & Vinayagam Mohanavel & Manickam Ravichandran & Parvathy Rajendran & Ahmad Rashedi & Abhishek Sharma & Sher Afghan Khan & Asif Afzal, 2021. "Combustion, Performance, and Emission Behaviors of Biodiesel Fueled Diesel Engine with the Impact of Alumina Nanoparticle as an Additive," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    9. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    10. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Mohammed A. Fayad & Mohammed Sobhi & Miqdam T. Chaichan & Tawfik Badawy & Wisam Essmat Abdul-Lateef & Hayder A. Dhahad & Talal Yusaf & Wan Nor Roslam Wan Isahak & Mohd S. Takriff & Ahmed A. Al-Amiery, 2023. "Reducing Soot Nanoparticles and NO X Emissions in CRDI Diesel Engine by Incorporating TiO 2 Nano-Additives into Biodiesel Blends and Using High Rate of EGR," Energies, MDPI, vol. 16(9), pages 1-14, May.
    12. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    13. Evangelos G. Giakoumis, 2017. "Diesel and Spark Ignition Engines Emissions and After-Treatment Control: Research and Advancements," Energies, MDPI, vol. 10(11), pages 1-4, November.
    14. Dimitrios N. Tziourtzioumis & Anastassios M. Stamatelos, 2019. "Diesel-Injection Equipment Parts Deterioration after Prolonged Use of Biodiesel," Energies, MDPI, vol. 12(10), pages 1-21, May.
    15. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Jaehwan Jang & Byungchae Min & Seongyool Ahn & Hyunjun Kim & Sangkyung Na & Jeongho Kang & Heehwan Roh & Gyungmin Choi, 2022. "Modeling Differential Pressure of Diesel Particulate Filters in Marine Engines," Energies, MDPI, vol. 15(10), pages 1-12, May.
    17. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    18. Simón Martínez-Martínez & Oscar A. de la Garza & Miguel García-Yera & Ricardo Martínez-Carrillo & Fausto A. Sánchez-Cruz, 2021. "Hydraulic Interactions between Injection Events Using Multiple Injection Strategies and a Solenoid Diesel Injector," Energies, MDPI, vol. 14(11), pages 1-11, May.
    19. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    20. Dash, Archana & Banerjee, Rintu, 2021. "Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:718-:d:1028402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.