IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3416-d810332.html
   My bibliography  Save this article

Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment

Author

Listed:
  • Magdalena Kapłan

    (Department of Pomology, Nursery and Enology, University of Life Sciences in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland)

  • Kamila Klimek

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland)

  • Grzegorz Maj

    (Department of Power Engineering and Transportation, University of Life Sciences in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland)

  • Dmytro Zhuravel

    (Department of Technical Systems and Technology in Livestock, Dmytro Motornyi Tavria State Agrotechnological University, 18 Bohdana Khmelnytskoho Avenue, Zaporizhia Oblast, 72312 Melitopol, Ukraine)

  • Andrii Bondar

    (Department of Technical Systems and Technology in Livestock, Dmytro Motornyi Tavria State Agrotechnological University, 18 Bohdana Khmelnytskoho Avenue, Zaporizhia Oblast, 72312 Melitopol, Ukraine)

  • Viktoriia Lemeshchenko-Lagoda

    (Department of Technical Systems and Technology in Livestock, Dmytro Motornyi Tavria State Agrotechnological University, 18 Bohdana Khmelnytskoho Avenue, Zaporizhia Oblast, 72312 Melitopol, Ukraine)

  • Boris Boltianskyi

    (Department of Technical Systems and Technology in Livestock, Dmytro Motornyi Tavria State Agrotechnological University, 18 Bohdana Khmelnytskoho Avenue, Zaporizhia Oblast, 72312 Melitopol, Ukraine)

  • Larysa Boltianska

    (Department of Technical Systems and Technology in Livestock, Dmytro Motornyi Tavria State Agrotechnological University, 18 Bohdana Khmelnytskoho Avenue, Zaporizhia Oblast, 72312 Melitopol, Ukraine)

  • Hanna Syrotyuk

    (Department of Technical Systems and Technology in Livestock, Dmytro Motornyi Tavria State Agrotechnological University, 18 Bohdana Khmelnytskoho Avenue, Zaporizhia Oblast, 72312 Melitopol, Ukraine)

  • Serhiy Syrotyuk

    (Department of Energy, Lviv National Agrarian University, 1 V. Velykoho Street, 80381 Dubliany, Ukraine)

  • Ryszard Konieczny

    (Department of Technology, Institute of Energy and Technical Safety, Jacob of Paradyz University, 52 Chopina Street, 66-400 Gorzow Wielkopolski, Poland)

  • Gabriel Filipczak

    (Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 5 Mikolajczyka Street, 45-271 Opole, Poland)

  • Dorota Anders

    (Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
    Department of Technology, Branch Poznan, 67 Biskupinska Street, 60-463 Poznan, Poland)

  • Barbara Dybek

    (Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
    Department of Technology, Branch Poznan, 67 Biskupinska Street, 60-463 Poznan, Poland)

  • Grzegorz Wałowski

    (Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
    Department of Technology, Branch Poznan, 67 Biskupinska Street, 60-463 Poznan, Poland)

Abstract

This article concerns the method of material consumption assessment of the cylinder-piston group of diesel engines in the biodiesel environment. The obtained experimental dependences of the wear coefficients on the example of the tribounit cylinder liner and the piston ring can be used to forecast the resource use during operation under specific conditions of the engine and the environment as a whole. The article systematizes the types of biofuels, depending on the type of raw materials from which they were made, taking into account the process and application. The physical and chemical aspects of the catalysts used for biofuels were indicated. The applied experimental methods for tribological wear of the piston-cylinder pair were analyzed. B70 biodiesel was used in the research, i.e., 70% mineral diesel oil and 30% methyl esters of rapeseed oil. Experimental tribotechnical studies of the influence of biofuels on the behavior of various materials have shown that when using this type of fuel, it is necessary to replace the materials from which some parts of the cylinder-piston group are made. To solve this problem, research has been carried out on a specially designed friction machine. The novelty in the article concerns the association, based on the literature, of hydrogen consumption causing material wear in friction contacts. The mechanism of the interaction of various construction materials during such friction has been disclosed.

Suggested Citation

  • Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3416-:d:810332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sander, Aleksandra & Antonije Košćak, Mihael & Kosir, Dominik & Milosavljević, Nikola & Parlov Vuković, Jelena & Magić, Lana, 2018. "The influence of animal fat type and purification conditions on biodiesel quality," Renewable Energy, Elsevier, vol. 118(C), pages 752-760.
    2. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    3. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    4. Zhang, Pingbo & Liu, Peng & Fan, Mingming & Jiang, Pingping & Haryono, Agus, 2021. "High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively," Renewable Energy, Elsevier, vol. 175(C), pages 244-252.
    5. Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    6. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    7. Avin Pillay & Arman Molki & Mirella Elkadi & Johnson Manuel & Shrinivas Bojanampati & Mohammed Khan & Sasi Stephen, 2013. "Real-Time Study of Noxious Gas Emissions and Combustion Efficiency of Blended Mixtures of Neem Biodiesel and Petrodiesel," Sustainability, MDPI, vol. 5(5), pages 1-10, May.
    8. Gabriel Cucui & Constantin Aurelian Ionescu & Ioana Raluca Goldbach & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin, 2018. "Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    9. Mariusz Niekurzak, 2021. "Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle," Energies, MDPI, vol. 14(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    2. Piotr Wróblewski & Mariusz Niekurzak, 2022. "Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    3. Mariusz Niekurzak, 2021. "Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle," Energies, MDPI, vol. 14(24), pages 1-18, December.
    4. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    5. Mariusz Niekurzak & Wojciech Lewicki & Wojciech Drożdż & Paweł Miązek, 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household," Energies, MDPI, vol. 15(16), pages 1-20, August.
    6. Yichang Zhang & Sha He & Min Pang & Qiong Li, 2023. "Green Technology Innovation of Energy Internet Enterprises: Study on Influencing Factors under Dual Carbon Goals," Energies, MDPI, vol. 16(3), pages 1-16, January.
    7. Constantin Aurelian Ionescu & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin & Liliana Paschia & Nicoleta Luminita Gudanescu Nicolau & Gabriel Cucui & Dan Marius Coman & Sorina Geanina Stanescu, 2019. "The Analysis of the Economic Effects on the Greening and Recovery of the Sludge Waste Resulting from the Biogas Production Activity," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    8. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    9. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    11. Srinivasan Senthil Kumar & K. Rajan & Vinayagam Mohanavel & Manickam Ravichandran & Parvathy Rajendran & Ahmad Rashedi & Abhishek Sharma & Sher Afghan Khan & Asif Afzal, 2021. "Combustion, Performance, and Emission Behaviors of Biodiesel Fueled Diesel Engine with the Impact of Alumina Nanoparticle as an Additive," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    12. Łukasz Sobol & Arkadiusz Dyjakon & Alessandro Suardi & Rainer Preißmann, 2021. "Analysis of the Possibility of Energetic Utilization of Biomass Obtained from Grass Mowing of a Large-Area Golf Course—A Case Study of Tuscany," Energies, MDPI, vol. 14(17), pages 1-22, September.
    13. Atelge, M.R., 2022. "Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1-15.
    14. Nogueira, Tiago Rocha & de Mesquita Figueredo, Igor & Tavares Luna, Francisco Murilo & Cavalcante, Célio Loureiro & Evangelista de Ávila dos Santos, João & Sousa Lima, Mary Anne & Josino da Silva, Thi, 2020. "Evaluation of oxidative stability of soybean biodiesel using ethanolic and chloroform extracts of Platymiscium floribundum as antioxidant," Renewable Energy, Elsevier, vol. 159(C), pages 767-774.
    15. Frolich, Karel & Vávra, Aleš & Kocík, Jaroslav & Hájek, Martin & Jílková, Alena, 2019. "The long-term catalytic performance of mixed oxides in fixed-bed reactors in transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1259-1267.
    16. Iman K. Reksowardojo & Hari Setiapraja & Mokhtar & Siti Yubaidah & Dieni Mansur & Agnes K. Putri, 2023. "A Study on Utilization of High-Ratio Biodiesel and Pure Biodiesel in Advanced Vehicle Technologies," Energies, MDPI, vol. 16(2), pages 1-14, January.
    17. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    18. Beata Zatwarnicka-Madura & Robert Nowacki & Iwona Wojciechowska, 2022. "Influencer Marketing as a Tool in Modern Communication—Possibilities of Use in Green Energy Promotion amongst Poland’s Generation Z," Energies, MDPI, vol. 15(18), pages 1-22, September.
    19. Lucas Reijnders, 2022. "Defining and Operationalizing Sustainability in the Context of Energy," Energies, MDPI, vol. 15(14), pages 1-9, July.
    20. Ionica Oncioiu & Ovidiu Constantin Bunget & Mirela Cătălina Türkeș & Sorinel Căpușneanu & Dan Ioan Topor & Attila Szora Tamaș & Ileana-Sorina Rakoș & Mihaela Ștefan Hint, 2019. "The Impact of Big Data Analytics on Company Performance in Supply Chain Management," Sustainability, MDPI, vol. 11(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3416-:d:810332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.