IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7345-d672368.html
   My bibliography  Save this article

Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network

Author

Listed:
  • Rocio Camarena-Martinez

    (Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico)

  • Rocio A. Lizarraga-Morales

    (Departamento de Arte y Empresa, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca 36885, Guanajuato, Mexico)

  • Roberto Baeza-Serrato

    (Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico)

Abstract

Recently, biodigesters have attracted much attention as an efficient alternative for energy generation and organic waste treatment. The final performance of a biodigester depends heavily on the quality of its building process and the selection of its raw material: the geomembrane. The geomembrane is the coat that covers the biodigester used to control the migration of fluids. Therefore, the selection of the proper geomembrane, in terms of thickness, resistance, flexibility, etc., is fundamental. Unfortunately, there are no studies for the selection of geomembranes, and usually, it is an empirical process performed by workers based on their own experience. Such empirical selection might be inaccurate, limited, inconvenient, and even dangerous. In order to assist workers during the building process of a biodigester, this study proposes the use of an Artificial Neural Network (ANN) to classify a geomembrane as appropriate or not appropriate for the manufacture of a biodigester. The ANN is trained with a database built from qualitative and quantitative evaluations of different characteristics of geomembranes. The results indicate that the proposed ANN classifies the most suitable geomembranes with a 99.9% success rate. The proposed ANN becomes a reliable tool that contributes to the quality and safety of a biodigester.

Suggested Citation

  • Rocio Camarena-Martinez & Rocio A. Lizarraga-Morales & Roberto Baeza-Serrato, 2021. "Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network," Energies, MDPI, vol. 14(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7345-:d:672368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oumayma Essid & Hamid Laga & Chafik Samir, 2018. "Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
    2. Fernando Luiz Lavoie & Clever Aparecido Valentin & Marcelo Kobelnik & Jefferson Lins da Silva & Maria de Lurdes Lopes, 2020. "HDPE Geomembranes for Environmental Protection: Two Case Studies," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    3. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    4. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    5. Lidia Lombardi & Barbara Mendecka & Simone Fabrizi, 2020. "Solar Integrated Anaerobic Digester: Energy Savings and Economics," Energies, MDPI, vol. 13(17), pages 1-16, August.
    6. Adel Mellit & Mohamed Benghanem & Omar Herrak & Abdelaziz Messalaoui, 2021. "Design of a Novel Remote Monitoring System for Smart Greenhouses Using the Internet of Things and Deep Convolutional Neural Networks," Energies, MDPI, vol. 14(16), pages 1-16, August.
    7. Jakub Frankowski & Maciej Zaborowicz & Jacek Dach & Wojciech Czekała & Jacek Przybył, 2020. "Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Dee," Energies, MDPI, vol. 13(11), pages 1-15, June.
    8. Monika Kulisz & Justyna Kujawska & Bartosz Przysucha & Wojciech Cel, 2021. "Forecasting Water Quality Index in Groundwater Using Artificial Neural Network," Energies, MDPI, vol. 14(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocio Camarena-Martinez & Roberto Baeza-Serrato & Rocio A. Lizarraga-Morales, 2023. "Optimization of Welding Process of Geomembranes in Biodigesters Using Design of Factorial Experiments," Energies, MDPI, vol. 16(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    2. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
    3. Jesmeen Mohd Zebaral Hoque & Nor Azlina Ab. Aziz & Salem Alelyani & Mohamed Mohana & Maruf Hosain, 2022. "Improving Water Quality Index Prediction Using Regression Learning Models," IJERPH, MDPI, vol. 19(20), pages 1-23, October.
    4. Amor Hamied & Adel Mellit & Mohamed Benghanem & Sahbi Boubaker, 2023. "IoT-Based Low-Cost Photovoltaic Monitoring for a Greenhouse Farm in an Arid Region," Energies, MDPI, vol. 16(9), pages 1-21, April.
    5. Yuliia Trach & Roman Trach & Marek Kalenik & Eugeniusz Koda & Anna Podlasek, 2021. "A Study of Dispersed, Thermally Activated Limestone from Ukraine for the Safe Liming of Water Using ANN Models," Energies, MDPI, vol. 14(24), pages 1-14, December.
    6. Maria Torres-Falcon & Omar Rodríguez-Abreo & Francisco Antonio Castillo-Velásquez & Alejandro Flores-Rangel & Juvenal Rodríguez-Reséndiz & José Manuel Álvarez-Alvarado, 2021. "Novel Mathematical Method to Obtain the Optimum Speed and Fuel Reduction in Heavy Diesel Trucks," Energies, MDPI, vol. 14(23), pages 1-17, December.
    7. Justyna Kujawska & Monika Kulisz & Piotr Oleszczuk & Wojciech Cel, 2023. "Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters," Energies, MDPI, vol. 16(10), pages 1-16, May.
    8. Jolanta Batog & Jakub Frankowski & Aleksandra Wawro & Agnieszka Łacka, 2020. "Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop," Energies, MDPI, vol. 13(23), pages 1-12, November.
    9. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    10. Lucas Reijnders, 2022. "Defining and Operationalizing Sustainability in the Context of Energy," Energies, MDPI, vol. 15(14), pages 1-9, July.
    11. Omojola Awogbemi & Daramy Vandi Von Kallon & Kazeem Aderemi Bello, 2022. "Resource Recycling with the Aim of Achieving Zero-Waste Manufacturing," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    12. Mohan, Revu Krishn & Sarojini, Jajimoggala & Rajak, Upendra & Verma, Tikendra Nath & Ağbulut, Ümit, 2023. "Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis," Energy, Elsevier, vol. 265(C).
    13. Muhammad Ishfaque & Qianwei Dai & Nuhman ul Haq & Khanzaib Jadoon & Syed Muzyan Shahzad & Hammad Tariq Janjuhah, 2022. "Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan," Energies, MDPI, vol. 15(9), pages 1-16, April.
    14. Dominika Sieracka & Maciej Zaborowicz & Jakub Frankowski, 2023. "Identification of Characteristic Parameters in Seed Yielding of Selected Varieties of Industrial Hemp ( Cannabis sativa L.) Using Artificial Intelligence Methods," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
    15. David Muñoz-Rodríguez & Pilar Aparicio-Martínez & Alberto-Jesus Perea-Moreno, 2022. "Contribution of Agroforestry Biomass Valorisation to Energy and Environmental Sustainability," Energies, MDPI, vol. 15(22), pages 1-7, November.
    16. Chiara Bersani & Carmelina Ruggiero & Roberto Sacile & Abdellatif Soussi & Enrico Zero, 2022. "Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0," Energies, MDPI, vol. 15(10), pages 1-30, May.
    17. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    18. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    19. George Halkos, 2023. "Economic Analysis and Policies for the Environment, Natural Resources, and Energy," Energies, MDPI, vol. 16(18), pages 1-6, September.
    20. Rimantas Barauskas & Andrius Kriščiūnas & Dalia Čalnerytė & Paulius Pilipavičius & Tautvydas Fyleris & Vytautas Daniulaitis & Robertas Mikalauskis, 2022. "Approach of AI-Based Automatic Climate Control in White Button Mushroom Growing Hall," Agriculture, MDPI, vol. 12(11), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7345-:d:672368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.