IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4503-d790611.html
   My bibliography  Save this article

Resource Recycling with the Aim of Achieving Zero-Waste Manufacturing

Author

Listed:
  • Omojola Awogbemi

    (Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa)

  • Daramy Vandi Von Kallon

    (Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa)

  • Kazeem Aderemi Bello

    (Department of Mechanical Engineering, Federal University, Oye 3600001, Nigeria)

Abstract

The management of the huge amounts of waste generated from domestic and industrial activities has continued to be a source of concern for humanity globally because of its impact on the ecosystem and human health. Millions of tons of such used materials, substances, and products are therefore discarded, rejected, and abandoned, because they have no further usefulness or application. Additionally, owing to the dearth of affordable materials for various applications, the environmental impact of waste, and the high cost of procuring virgin materials, there have been intensive efforts directed towards achieving the reduction, minimization, and eradication of waste in human activities. The current review investigates zero-waste (ZW) manufacturing and the various techniques for achieving zero waste by means of resource recycling. The benefits and challenges of applying innovative technologies and waste recycling techniques in order to achieve ZW are investigated. Techniques for the conversion of waste glass, paper, metals, textiles, plastic, tire, and wastewater into various products are highlighted, along with their applications. Although waste conversion and recycling have several drawbacks, the benefits of ZW to the economy, community, and environment are numerous and cannot be overlooked. More investigations are desirable in order to unravel more innovative manufacturing techniques and innovative technologies for attaining ZW with the aim of pollution mitigation, waste reduction, cost-effective resource recovery, energy security, and environmental sustainability.

Suggested Citation

  • Omojola Awogbemi & Daramy Vandi Von Kallon & Kazeem Aderemi Bello, 2022. "Resource Recycling with the Aim of Achieving Zero-Waste Manufacturing," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4503-:d:790611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    2. D. Yu. Pimenov & A. Bustillo & T. Mikolajczyk, 2018. "Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1045-1061, June.
    3. Sandisiwe Khanyisa Thisani & Daramy Vondi Von Kallon & Patrick Byrne, 2020. "Geochemical Classification of Global Mine Water Drainage," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    4. Jianli Liu & Jianyao Liang & Jiannan Ding & Guangming Zhang & Xianyi Zeng & Qingbo Yang & Bo Zhu & Weidong Gao, 2021. "Microfiber pollution: an ongoing major environmental issue related to the sustainable development of textile and clothing industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11240-11256, August.
    5. Subramanian, Avinash S.R. & Gundersen, Truls & Adams, Thomas A., 2020. "Technoeconomic analysis of a waste tire to liquefied synthetic natural gas (SNG) energy system," Energy, Elsevier, vol. 205(C).
    6. Li, Liquan & Liu, Gongqi & Pan, Dean & Wang, Wei & Wu, Yufeng & Zuo, Tieyong, 2017. "Overview of the recycling technology for copper-containing cables," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 132-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhitong Yao & Wei Qi & José Luiz Francisco Alves, 2023. "Editorial for the Special Issue on the Environmentally Friendly Management and Treatment of Solid Waste to Approach Zero Waste City," Sustainability, MDPI, vol. 15(1), pages 1-2, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Adriana Gheorghe & Roxana Matefi, 2021. "Sustainability and Transparency—Necessary Conditions for the Transition from Fast to Slow Fashion: Zara Join Life Collection’s Analysis," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    2. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    3. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    4. Rocio Camarena-Martinez & Rocio A. Lizarraga-Morales & Roberto Baeza-Serrato, 2021. "Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network," Energies, MDPI, vol. 14(21), pages 1-13, November.
    5. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    6. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    7. Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
    8. Sandisiwe Khanyisa Thisani & Daramy Vandi Von Kallon & Patrick Byrne, 2021. "Effects of Contact Time and Flow Configuration on the Acid Mine Drainage Remediation Capabilities of Pervious Concrete," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    9. Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
    10. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    11. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    12. Ardamanbir Singh Sidhu & Sehijpal Singh & Raman Kumar & Danil Yurievich Pimenov & Khaled Giasin, 2021. "Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study," Energies, MDPI, vol. 14(16), pages 1-39, August.
    13. J. Santhakumar & U. Mohammed Iqbal, 2021. "Role of trochoidal machining process parameter and chip morphology studies during end milling of AISI D3 steel," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 649-665, March.
    14. Subramanian, Avinash S.R. & Gundersen, Truls & Adams, Thomas A., 2021. "Optimal design and operation of a waste tire feedstock polygeneration system," Energy, Elsevier, vol. 223(C).
    15. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    16. Blinová Lenka & Godovčin Peter, 2021. "Importance of Recycling the Waste-Cables Containing Copper and PVC," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 29(48), pages 1-21, June.
    17. Victor Flores & Brian Keith, 2019. "Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry," Complexity, Hindawi, vol. 2019, pages 1-15, July.
    18. Graeme Moad & David Henry Solomon, 2021. "The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    19. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    20. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4503-:d:790611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.