IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7199-d1264876.html
   My bibliography  Save this article

Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050

Author

Listed:
  • Arthit Champeecharoensuk

    (Department of Energy, Environment, and Climate Change, School of Environment, Resource and Development, Asian Institute of Technology, Pathum Thani 12120, Thailand)

  • Shobhakar Dhakal

    (Department of Energy, Environment, and Climate Change, School of Environment, Resource and Development, Asian Institute of Technology, Pathum Thani 12120, Thailand)

  • Nuwong Chollacoop

    (National Energy Technology Center (ENTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand)

Abstract

Thailand’s civil aviation industry has expanded rapidly in the past ten years resulting in increasing aviation greenhouse gas (GHG) emissions and energy consumption. The rapid growth in air transport is anticipated to continue further. Presently, domestic aviation and the economy of many countries are recovering rapidly in the post-COVID-19 period, resulting in fuel consumption and GHG emissions gradually increasing again. However, despite implementing the ICAO’s CORSIA (International Civil Aviation Organization’s Carbon Offsetting and Reduction Scheme for International Aviation) rule for international aviation, GHG emissions in the domestic aviation sector are largely unregulated. Moreover, the literature lacks a GHG emissions analysis that considers this sector’s potential growth and mitigation policies for future GHG emissions. To close the gap, this study conducted a GHG emissions analysis from this sector under various scenarios through 2050 using historical data during 2008–2020 to forecast future trends. It evaluates the impact of the mitigation policies, such as fuel switching and aircraft technology, on improving fuel efficiency due to technological advancements in aircraft and carbon pricing. The results show that the fuel switching option would result in a significant long-term reduction in GHG emissions, whereas the carbon pricing option and aircraft technology option are desirable in reducing GHG emissions in the short term. Therefore, to meet GHG emissions reduction targets more successfully, all measures must be simultaneously executed to address short- and long-term mitigation strategies. These findings have significant implications for both present and future GHG emissions reduction measures, supporting Thailand’s 2050 climate targets and energy efficiency policies as the domestic aviation industry adjusts.

Suggested Citation

  • Arthit Champeecharoensuk & Shobhakar Dhakal & Nuwong Chollacoop, 2023. "Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7199-:d:1264876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    2. Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
    3. Mafalda Narciso & João M. Melo de Sousa, 2021. "Influence of Sustainable Aviation Fuels on the Formation of Contrails and Their Properties," Energies, MDPI, vol. 14(17), pages 1-19, September.
    4. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Tacconi, Daniela, 2014. "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels," Applied Energy, Elsevier, vol. 136(C), pages 767-774.
    5. Edwards, Holly A. & Dixon-Hardy, Darron & Wadud, Zia, 2016. "Aircraft cost index and the future of carbon emissions from air travel," Applied Energy, Elsevier, vol. 164(C), pages 553-562.
    6. Md Arif Hasan & David J. Frame & Ralph Chapman & Kelli M. Archie, 2020. "Curbing the car: the mitigation potential of a higher carbon price in the New Zealand transport sector," Climate Policy, Taylor & Francis Journals, vol. 20(5), pages 563-576, May.
    7. Sven Maertens & Wolfgang Grimme & Janina Scheelhaase & Martin Jung, 2019. "Options to Continue the EU ETS for Aviation in a CORSIA-World," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    8. Alice Bows-Larkin, 2015. "All adrift: aviation, shipping, and climate change policy," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 681-702, November.
    9. Macintosh, Andrew & Wallace, Lailey, 2009. "International aviation emissions to 2025: Can emissions be stabilised without restricting demand?," Energy Policy, Elsevier, vol. 37(1), pages 264-273, January.
    10. Kimon Keramidas & Stephane Tchung-Ming & Ana Raquel Diaz-Vazquez & Matthias Weitzel & Toon Vandyck & Jacques Despres & Andreas Schmitz & Luis Rey Los Santos & Krzysztof Wojtowicz & Burkhard Schade & B, 2018. "Global Energy and Climate Outlook 2018: Sectoral mitigation options towards a low-emissions economy," JRC Research Reports JRC113446, Joint Research Centre.
    11. Parikh, Jyoti & Purohit, Pallav & Maitra, Pallavi, 2007. "Demand projections of petroleum products and natural gas in India," Energy, Elsevier, vol. 32(10), pages 1825-1837.
    12. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
    2. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    3. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    4. Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
    5. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    6. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2012. "A PSO–GA optimal model to estimate primary energy demand of China," Energy Policy, Elsevier, vol. 42(C), pages 329-340.
    7. Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
    8. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    9. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    10. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    11. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    12. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    13. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    14. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    15. Chiaramonti, David & Goumas, Theodor, 2019. "Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Wang, Haoran & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Effect of double bypass conditions on the thermodynamic characteristics and internal flow mechanisms in a variable core cycle compression system," Energy, Elsevier, vol. 304(C).
    17. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    18. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    19. Chen, Dan & Yin, Jianan & Xu, Feng & Huang, Chen & Li, Ziyu, 2023. "A market-based framework for CO2 emissions reduction in China's civil aviation industry," Transport Policy, Elsevier, vol. 143(C), pages 150-158.
    20. Vela-García, Nicolas & Bolonio, David & Mosquera, Ana María & Ortega, Marcelo F. & García-Martínez, María-Jesús & Canoira, Laureano, 2020. "Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7199-:d:1264876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.