IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p511-d1023006.html
   My bibliography  Save this article

Reducing Environmental Impact of Coal-Fired Power Plants by Building an Indoor Coal Storage: An Economic Analysis

Author

Listed:
  • JongRoul Woo

    (Graduate School of Energy and Environment (KU-KIST Green School), Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea)

  • Jungwoo Shin

    (Department of Industrial and Management Systems Engineering, Department of Big Data Analytics, Kyung Hee University, 1732 Deogyeongdae-Ro, Giheung-Gu, Yongin 17104, Republic of Korea)

  • Seung-Hoon Yoo

    (Department of Future Energy Convergence, Seoul National University of Science & Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, Republic of Korea)

  • Sung-Yoon Huh

    (Department of Future Energy Convergence, Seoul National University of Science & Technology, 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, Republic of Korea)

Abstract

Coal-fired power plants have been identified as one of the major sources of air pollutants in the power sector. Most coal-fired power stations have large open-air coal stockpiles, which lead to a considerable amount of fugitive dust. The construction of an indoor coal storage is known to control coal dust; however, it requires significant upfront capital. Certain power utilities, including those in South Korea, are currently considering or are required to build indoor coal storages. This study analyzed the benefit and economic feasibility of indoor coal storages in coal-fired power stations. A contingent valuation method was used to elicit people’s willingness to pay for the construction of new indoor coal storages. The results showed that, on average, a South Korean household was willing to pay KRW 59,242 (USD 53.97) in a lump-sum payment toward the construction of indoor coal storages at six coal-fired power stations (total storage capacity of 5.47 million tons of coal, with a site area of 1.15 million m 2 ). The resulting benefit–cost ratio of the project was calculated to be 0.52, which was not economically feasible. Thus, it is recommended that the South Korean government should focus on other cost-effective projects to improve air quality.

Suggested Citation

  • JongRoul Woo & Jungwoo Shin & Seung-Hoon Yoo & Sung-Yoon Huh, 2023. "Reducing Environmental Impact of Coal-Fired Power Plants by Building an Indoor Coal Storage: An Economic Analysis," Energies, MDPI, vol. 16(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:511-:d:1023006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    2. Abby N. Hagemeyer & Clara G. Sears & Kristina M. Zierold, 2019. "Respiratory Health in Adults Residing Near a Coal-Burning Power Plant with Coal Ash Storage Facilities: A Cross-Sectional Epidemiological Study," IJERPH, MDPI, vol. 16(19), pages 1-10, September.
    3. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    4. Jun, Eunju & Joon Kim, Won & Hoon Jeong, Yong & Heung Chang, Soon, 2010. "Measuring the social value of nuclear energy using contingent valuation methodology," Energy Policy, Elsevier, vol. 38(3), pages 1470-1476, March.
    5. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    6. Juha Sipilä & Pertti Auerkari & Stefan Holmström & Iris Vela, 2014. "Early Warning Indicators for Challenges in Underground Coal Storage," Risk Analysis, John Wiley & Sons, vol. 34(12), pages 2089-2097, December.
    7. Juha Sipilä & Pertti Auerkari & Yngve Malmén & Anna-Mari Heikkilä & Iris Vela & Ulrich Krause, 2013. "Experience and the unexpected: risk and mitigation issues for operating underground storage silos for coal-fired power plant," Journal of Risk Research, Taylor & Francis Journals, vol. 16(3-4), pages 487-500, April.
    8. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    9. Michael Hanemann & John Loomis & Barbara Kanninen, 1991. "Statistical Efficiency of Double-Bounded Dichotomous Choice Contingent Valuation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(4), pages 1255-1263.
    10. Dincer, Ibrahim, 1999. "Environmental impacts of energy," Energy Policy, Elsevier, vol. 27(14), pages 845-854, December.
    11. Ian J. Bateman & Richard T. Carson & Brett Day & Michael Hanemann & Nick Hanley & Tannis Hett & Michael Jones-Lee & Graham Loomes, 2002. "Economic Valuation with Stated Preference Techniques," Books, Edward Elgar Publishing, number 2639.
    12. Jha, Akshaya & Muller, Nicholas Z., 2018. "The local air pollution cost of coal storage and handling: Evidence from U.S. power plants," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 360-396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    2. Lee, Min-Kyu & Nam, Jungho & Kim, Miju, 2023. "Valuing the public preference for offshore wind energy: The case study in South Korea," Energy, Elsevier, vol. 263(PB).
    3. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "Are Korean Households Willing to Pay a Premium for Induction Cooktops over Gas Stoves?," Sustainability, MDPI, vol. 9(9), pages 1-10, August.
    4. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    5. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    6. Nduka, Eleanya, 2021. "How to get rural households out of energy poverty in Nigeria: A contingent valuation," Energy Policy, Elsevier, vol. 149(C).
    7. Kim, Jinsoo & Kim, Jihyo, 2015. "Korean public’s perceptions on supply security of fossil fuels: A contingent valuation analysis," Applied Energy, Elsevier, vol. 137(C), pages 301-309.
    8. Kyu-Won Hwang & Jaekyun Ahn & Chul-Yong Lee, 2023. "Analysis of Consumer Willingness to Pay for Community Solar Business Using Contingent Valuation Method," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    9. Seul-Ye Lim & Hyo-Jin Kim & Seung-Hoon Yoo, 2017. "South Korean Household’s Willingness to Pay for Replacing Coal with Natural Gas? A View from CO 2 Emissions Reduction," Energies, MDPI, vol. 10(12), pages 1-9, December.
    10. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    11. Yun-Ju Chen & Sheng Ming Hsu & Shu-Yi Liao & Tsung-Chi Chen & Wei-Chun Tseng, 2019. "Natural Gas or Algal Reef: Survey-Based Valuations of Pro-Gas and Pro-Reef Groups Specifically for Policy Advising," Energies, MDPI, vol. 12(24), pages 1-18, December.
    12. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Kerstin K Zander & Gillian B Ainsworth & Jürgen Meyerhoff & Stephen T Garnett, 2014. "Threatened Bird Valuation in Australia," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    14. Domínguez-Torreiro, Marcos & Soliño, Mario, 2011. "Provided and perceived status quo in choice experiments: Implications for valuing the outputs of multifunctional rural areas," Ecological Economics, Elsevier, vol. 70(12), pages 2523-2531.
    15. Henrik Andersson & James Hammitt & Gunnar Lindberg & Kristian Sundström, 2013. "Willingness to Pay and Sensitivity to Time Framing: A Theoretical Analysis and an Application on Car Safety," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 437-456, November.
    16. J. Paul Combs & Rickey C. Kirkpatrick & Jason F. Shogren & Joseph A. Herriges, 1993. "Matching Grants and Public Goods: a Closed-Ended Contingent Valuation Experiment," Public Finance Review, , vol. 21(2), pages 178-195, April.
    17. Carmelo Javier León, 1995. "El método dicotómico de valoración contingente: una aplicación a los espacios naturales en Gran Canaria," Investigaciones Economicas, Fundación SEPI, vol. 19(1), pages 83-106, January.
    18. Gebreegziabher, Z. & Mekonnen, A. & Beyene, A.D. & Hagos, F., 2018. "Valuation of access to irrigation water in rural Ethiopia: application of choice experiment and contingent valuation methods," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277168, International Association of Agricultural Economists.
    19. W. George Hutchinson & Riccardo Scarpa & Susan M. Chilton & T. McCallion, 2001. "Parametric and Non‐Parametric Estimates of Willingness to Pay for Forest Recreation in Northern Ireland: A Discrete Choice Contingent Valuation Study with Follow‐Ups," Journal of Agricultural Economics, Wiley Blackwell, vol. 52(1), pages 104-122, January.
    20. Koo, A Mi & Kim, Ju-Hee & Yoo, Seung-Hoon, 2022. "Household willingness to pay for a smart water metering and monitoring system: The case of South Korea," Utilities Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:511-:d:1023006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.