IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5029-d1095001.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Analysis of Consumer Willingness to Pay for Community Solar Business Using Contingent Valuation Method

Author

Listed:
  • Kyu-Won Hwang

    (Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea)

  • Jaekyun Ahn

    (Korea Energy Economics Institute, 405-11, Jongga-ro, Jung-Gu, Ulsan 44543, Republic of Korea)

  • Chul-Yong Lee

    (School of Business, Pusan National University, 2, Busan Daehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea)

Abstract

Electricity production using renewable energy instead of fossil-fuel-based energy sources has been expanding worldwide. Recently, the South Korean government has set a transition from a government and power company-led energy system to a public-participatory energy system as a basic policy direction in terms of power production. It has been actively providing budgetary and institutional support. A comprehensive understanding of the consumer (public)-oriented preferences of potential business participants is crucial for implementing a successful community solar business. This study analyzes the preferences of potential participants in the community solar business from the perspective of policymakers to derive policy implications. We used the contingent valuation method of the stated preference approach targeting potential participants (public) to create a hypothetical market for community solar businesses and measured the value by inducing survey respondents to trade for goods or services. The monthly average willingness-to-pay was estimated to be 25,572 won (USD 21.90), and gender, photovoltaic business experience, and income were the main influencing factors. Based on the results of this study, the preferences of potential consumers in South Korea were analyzed to contribute to the effectiveness of the national energy policy.

Suggested Citation

  • Kyu-Won Hwang & Jaekyun Ahn & Chul-Yong Lee, 2023. "Analysis of Consumer Willingness to Pay for Community Solar Business Using Contingent Valuation Method," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5029-:d:1095001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
    2. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    3. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    4. Zhang, Lei & Wu, Yang, 2012. "Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province," Energy Policy, Elsevier, vol. 51(C), pages 514-523.
    5. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    6. Wiser, Ryan H., 2007. "Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles," Ecological Economics, Elsevier, vol. 62(3-4), pages 419-432, May.
    7. Carlo Andrea Bollino, 2009. "The Willingness to Pay for Renewable Energy Sources: The Case of Italy with Socio-demographic Determinants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 81-96.
    8. Ju-Hee Kim & Sin-Young Kim & Seung-Hoon Yoo, 2020. "Public Acceptance of the “Renewable Energy 3020 Plan”: Evidence from a Contingent Valuation Study in South Korea," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
    9. Jin, Jianjun & Wan, Xinyu & Lin, Yongsheng & Kuang, Foyuan & Ning, Jing, 2019. "Public willingness to pay for the research and development of solar energy in Beijing, China," Energy Policy, Elsevier, vol. 134(C).
    10. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    11. Kim, Jihyo & Park, Jooyoung & Kim, Jinsoo & Heo, Eunnyeong, 2013. "Renewable electricity as a differentiated good? The case of the Republic of Korea," Energy Policy, Elsevier, vol. 54(C), pages 327-334.
    12. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    13. Michael Hanemann & John Loomis & Barbara Kanninen, 1991. "Statistical Efficiency of Double-Bounded Dichotomous Choice Contingent Valuation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(4), pages 1255-1263.
    14. Guo, Xiurui & Liu, Haifeng & Mao, Xianqiang & Jin, Jianjun & Chen, Dongsheng & Cheng, Shuiyuan, 2014. "Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China," Energy Policy, Elsevier, vol. 68(C), pages 340-347.
    15. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
    16. Randall, Alan & Ives, Berry & Eastman, Clyde, 1974. "Bidding games for valuation of aesthetic environmental improvements," Journal of Environmental Economics and Management, Elsevier, vol. 1(2), pages 132-149, August.
    17. Nomura, Noboru & Akai, Makoto, 2004. "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, Elsevier, vol. 78(4), pages 453-463, August.
    18. Yoo, Seung-Hoon & Kwak, So-Yoon, 2009. "Willingness to pay for green electricity in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 37(12), pages 5408-5416, December.
    19. Han, Myat Su & Biying, Yu & Cudjoe, Dan & Yuan, Qianqian, 2020. "Investigating willingness-to-pay to support solar energy research and development in Myanmar," Energy Policy, Elsevier, vol. 146(C).
    20. Akcura, Elcin, 2015. "Mandatory versus voluntary payment for green electricity," Ecological Economics, Elsevier, vol. 116(C), pages 84-94.
    21. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan, 2011. "The diffusion of microgeneration technologies - assessing the influence of perceived product characteristics on home owners' willingness to pay," Energy Policy, Elsevier, vol. 39(3), pages 1459-1469, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    2. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    3. Yu, Ying & Yamaguchi, Kensuke & Thuy, Truong Dang & Kittner, Noah, 2022. "Will the public in emerging economies support renewable energy? Evidence from Ho Chi Minh City, Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    5. Cheng, Y.S. & Cao, K.H. & Woo, C.K. & Yatchew, A., 2017. "Residential willingness to pay for deep decarbonization of electricity supply: Contingent valuation evidence from Hong Kong," Energy Policy, Elsevier, vol. 109(C), pages 218-227.
    6. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    7. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.
    8. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
    9. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    10. Lee, Chul-Yong & Lee, Min-Kyu & Yoo, Seung-Hoon, 2017. "Willingness to pay for replacing traditional energies with renewable energy in South Korea," Energy, Elsevier, vol. 128(C), pages 284-290.
    11. Bae, Jeong Hwan & Rishi, Meenakshi, 2018. "Increasing consumer participation rates for green pricing programs: A choice experiment for South Korea," Energy Economics, Elsevier, vol. 74(C), pages 490-502.
    12. Huh, Sung-Yoon & Lee, Jongsu & Shin, Jungwoo, 2015. "The economic value of South Korea׳s renewable energy policies (RPS, RFS, and RHO): A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 64-72.
    13. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
    14. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
    15. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2017. "Public's willingness to pay a premium for bioethanol in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 101(C), pages 20-27.
    16. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    17. Anna Kowalska-Pyzalska, 2019. "Do Consumers Want to Pay for Green Electricity? A Case Study from Poland," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    18. Anna Kowalska-Pyzalska & David Ramsey, 2018. "Household willingness to pay for green electricity in Poland," HSC Research Reports HSC/18/04, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Azlina, A. A. & Abu Bakar, Shahida & Kamaludin, Mahirah & Ghani, Awang Noor, 2022. "Willingness to Pay for Renewable Energy: Evidence From High Wind and Wave Energy Potential Areas," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 59-70.
    20. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5029-:d:1095001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.