IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6654-d1241323.html
   My bibliography  Save this article

Research on Regional Carbon Emission Reduction in the Beijing–Tianjin–Hebei Urban Agglomeration Based on System Dynamics: Key Factors and Policy Analysis

Author

Listed:
  • Yuan Zeng

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
    These authors contributed equally to this work.)

  • Wengang Zhang

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
    These authors contributed equally to this work.)

  • Jingwen Sun

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Li’ao Sun

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Jun Wu

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract

Urban agglomerations are regions where the economy and population are highly concentrated, which are also spatial units with more concentrated carbon emissions. A detailed decomposition of driving factors based on changes in carbon emissions of urban agglomerations can provide a reference for better carbon reduction policies. In this paper, we establish an evaluation framework of carbon emission drivers of urban agglomeration from the perspective of CO 2 generation and removal using a system dynamics method. The key influencing factors and optimal emission reduction measures of carbon emissions in urban agglomerations are explored. The results are as follows: (1) The industrial structure is the key influencing factor of carbon emissions; (2) compared with no implementation of any policies, the total carbon emissions and carbon emission intensity of integrated policies all significantly decrease, with a decrease of 43.68% and 53.32%, respectively in 2035; (3) energy structure adjustment has a significant effect in reducing carbon emissions and carbon emission intensity; (4) the role of increasing investment in technological innovation in ensuring achievement of “carbon peak” should not be ignored. It is found that integrated policies often exhibit a better emission reduction effect, but this effect is not a simple summation of the effects of each single policy.

Suggested Citation

  • Yuan Zeng & Wengang Zhang & Jingwen Sun & Li’ao Sun & Jun Wu, 2023. "Research on Regional Carbon Emission Reduction in the Beijing–Tianjin–Hebei Urban Agglomeration Based on System Dynamics: Key Factors and Policy Analysis," Energies, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6654-:d:1241323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    2. Mostafaeipour, Ali & Bidokhti, Abbas & Fakhrzad, Mohammad-Bagher & Sadegheih, Ahmad & Zare Mehrjerdi, Yahia, 2022. "A new model for the use of renewable electricity to reduce carbon dioxide emissions," Energy, Elsevier, vol. 238(PA).
    3. David A. Stainforth, 2021. "‘Polluter pays’ policy could speed up emission reductions and removal of atmospheric CO2," Nature, Nature, vol. 596(7872), pages 346-347, August.
    4. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    5. Yang Yang & Fan He & Junping Ji & Xin Liu, 2022. "Peaking Carbon Emissions in a Megacity through Economic Restructuring: A Case Study of Shenzhen, China," Energies, MDPI, vol. 15(19), pages 1-24, September.
    6. Yanran Liu & Lei Tang & Guangfu Liu, 2022. "Carbon Dioxide Emissions Reduction through Technological Innovation: Empirical Evidence from Chinese Provinces," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    7. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    8. Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    9. Xu, Ning & Ding, Song & Gong, Yande & Bai, Ju, 2019. "Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model," Energy, Elsevier, vol. 175(C), pages 218-227.
    10. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    11. Sam Fankhauser & Stephen M. Smith & Myles Allen & Kaya Axelsson & Thomas Hale & Cameron Hepburn & J. Michael Kendall & Radhika Khosla & Javier Lezaun & Eli Mitchell-Larson & Michael Obersteiner & Lava, 2022. "The meaning of net zero and how to get it right," Nature Climate Change, Nature, vol. 12(1), pages 15-21, January.
    12. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuohua Zhang & Hanning Dong & Can Lu & Wei Li, 2023. "Carbon Emission Projection and Carbon Quota Allocation in the Beijing–Tianjin–Hebei Region of China under Carbon Neutrality Vision," Sustainability, MDPI, vol. 15(21), pages 1-29, October.
    2. Yuan Feng & Liyuan Wang & Changfei Nie, 2024. "Can place-based policy reduce carbon emissions? Evidence from industrial transformation and upgrading exemplary zone in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    3. Chao Wang & Yuxiao Kong & Xingliang Lu & Hongyi Xie & Yanmin Teng & Jinyan Zhan, 2024. "Rethinking Regional High-Quality Development Pathways from a Carbon Emission Efficiency Perspective," Land, MDPI, vol. 13(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinxing Hu & Cuiying Shao & Zhaolong Zhang, 2022. "The Impact of Sustainable Regional Development Policy on Carbon Emissions: Evidence from Yangtze River Delta of China," Energies, MDPI, vol. 15(24), pages 1-25, December.
    2. Wang, Xueyang & Sun, Xiumei & Ahmad, Mahmood & Chen, Jiawei, 2024. "Energy transition, ecological governance, globalization, and environmental sustainability: Insights from the top ten emitting countries," Energy, Elsevier, vol. 292(C).
    3. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    4. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    5. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    6. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    7. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    8. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    10. Song, Xiaoling & Yao, Yumeng & Wu, Xueke, 2023. "Digital finance, technological innovation, and carbon dioxide emissions," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 482-494.
    11. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    12. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    13. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Stamp, Alice V., 2021. "Is the service industry really low-carbon? Energy, jobs and realistic country GHG emissions reductions," Applied Energy, Elsevier, vol. 292(C).
    14. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    15. Hemmings, Peter & Mulheron, Michael & Murphy, Richard J. & Prescott, Matt, 2023. "Investigating the robustness of UK airport net zero plans," Journal of Air Transport Management, Elsevier, vol. 113(C).
    16. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    17. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    18. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    19. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    20. Torres, Juan Pablo & Barrera, Jose Ignacio & Kunc, Martin & Charters, Steve, 2021. "The dynamics of wine tourism adoption in Chile," Journal of Business Research, Elsevier, vol. 127(C), pages 474-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6654-:d:1241323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.