IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6620-d1239845.html
   My bibliography  Save this article

Dynamic Characteristics Analysis for a Novel Double-Rotor He-Xe Closed-Brayton-Cycle Space Nuclear Power Generation System

Author

Listed:
  • Kunlin Cheng

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400000, China)

  • Jiahui Li

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jianchi Yu

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jiang Qin

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
    Chongqing Research Institute, Harbin Institute of Technology, Chongqing 400000, China)

  • Wuxing Jing

    (School of Astronautics, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The growing demand for electricity in long-duration space missions has become a pressing concern. The space nuclear closed-Brayton-cycle (CBC) power generation system offers advantages in power output, operational lifespan, and range. However, a significant speed disparity exists between its compressor and alternator. To address this challenge, this paper proposes a double-rotor CBC configuration. A corresponding dynamic model that couples the nuclear reactor and radiator is formulated, and dynamic analysis is conducted to facilitate system control. The study delves into the dynamic start-up process of the double-rotor CBC system and examines how various component parameters impact its power generation performance. The findings indicate that through the introduction of suitable reactivity to regulate reactor power and the incorporation of a PID controller to manage flow distribution between two turbines, the system can achieve start-up within 5200 s. Moreover, the innovative double-rotor structure suggested in this paper enables the separation of compressor and alternator speeds. Consequently, the compressor and alternator can operate within their optimal speed ranges independently, which is a feature that holds potential benefits for the system’s practical implementation. In addition, the steady-state operation of the system showcases the recuperator’s heat transfer power at around 1127.60 kW, a parameter of significant importance. Following steady-state operation, the double-rotor CBC system demonstrated an electrical power output of 175.99 kW and a thermal efficiency of 32.38%.

Suggested Citation

  • Kunlin Cheng & Jiahui Li & Jianchi Yu & Jiang Qin & Wuxing Jing, 2023. "Dynamic Characteristics Analysis for a Novel Double-Rotor He-Xe Closed-Brayton-Cycle Space Nuclear Power Generation System," Energies, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6620-:d:1239845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biondi, Alfonso & Toro, Claudia, 2019. "Closed Brayton Cycles for Power Generation in Space: Modeling, simulation and exergy analysis," Energy, Elsevier, vol. 181(C), pages 793-802.
    2. Adamantiades, A. & Kessides, I., 2009. "Nuclear power for sustainable development: Current status and future prospects," Energy Policy, Elsevier, vol. 37(12), pages 5149-5166, December.
    3. Cihangir, Serhan Ahmet & Aygun, Hakan & Turan, Onder, 2022. "Energy and performance analysis of a turbofan engine with the aid of dynamic component efficiencies," Energy, Elsevier, vol. 260(C).
    4. Umberto Lucia & Giulia Grisolia, 2021. "The Gouy-Stodola Theorem—From Irreversibility to Sustainability—The Thermodynamic Human Development Index," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    2. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    3. Mounir Ben Mbarek & Racha Khairallah & Rochdi Feki, 2015. "Causality relationships between renewable energy, nuclear energy and economic growth in France," Environment Systems and Decisions, Springer, vol. 35(1), pages 133-142, March.
    4. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    5. Ridoan Karim & Mohammad Ershadul Karim & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abu Bakar Munir & Ahmed Imran Kabir & Jorge Alfredo Ardila-Rey & Abdullahi Abubakar Mas’ud, 2018. "Nuclear Energy Development in Bangladesh: A Study of Opportunities and Challenges," Energies, MDPI, vol. 11(7), pages 1-15, June.
    6. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    7. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    8. Dainius Genys & Ričardas Krikštolaitis, 2020. "Clusterization of public perception of nuclear energy in relation to changing political priorities," Post-Print hal-03271859, HAL.
    9. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    10. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    11. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    12. Bruce Tonn & Paul Frymier & Jared Graves & Jessa Meyers, 2010. "A Sustainable Energy Scenario for the United States: Year 2050," Sustainability, MDPI, vol. 2(12), pages 1-31, November.
    13. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    14. AlFarra, Hasan Jamil & Abu-Hijleh, Bassam, 2012. "The potential role of nuclear energy in mitigating CO2 emissions in the United Arab Emirates," Energy Policy, Elsevier, vol. 42(C), pages 272-285.
    15. Gideon Kwaku Minua Ampofo & Jinhua Cheng & Edwin Twum Ayimadu & Daniel Akwasi Asante, 2021. "Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries," Energies, MDPI, vol. 14(2), pages 1-29, January.
    16. George Halkos & Argyro Zisiadou, 2023. "Energy Crisis Risk Mitigation through Nuclear Power and RES as Alternative Solutions towards Self-Sufficiency," JRFM, MDPI, vol. 16(1), pages 1-29, January.
    17. Santos, Ricardo Luis Pereira dos & Rosa, Luiz Pinguelli & Arouca, Maurício Cardoso & Ribeiro, Alan Emanuel Duailibe, 2013. "The importance of nuclear energy for the expansion of Brazil's electricity grid," Energy Policy, Elsevier, vol. 60(C), pages 284-289.
    18. Grzegorz Zimon & Dulal Chandra Pattak & Liton Chandra Voumik & Salma Akter & Funda Kaya & Robert Walasek & Konrad Kochański, 2023. "The Impact of Fossil Fuels, Renewable Energy, and Nuclear Energy on South Korea’s Environment Based on the STIRPAT Model: ARDL, FMOLS, and CCR Approaches," Energies, MDPI, vol. 16(17), pages 1-21, August.
    19. Umberto Lucia & Debora Fino & Giulia Grisolia, 2022. "A thermoeconomic indicator for the sustainable development with social considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2022-2036, February.
    20. van de Graaff, Shashi, 2016. "Understanding the nuclear controversy: An application of cultural theory," Energy Policy, Elsevier, vol. 97(C), pages 50-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6620-:d:1239845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.