IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037903.html
   My bibliography  Save this article

Power regulation methods and regulation characteristics of the space reactor direct Brayton cycle with helium-xenon working fluid

Author

Listed:
  • Ma, Wenkui
  • Yang, Xiaoyong
  • Wang, Jie

Abstract

The development of long lifespan, high power density, and efficient space power systems is crucial for advancing deep space exploration initiatives. Integration of space reactors with direct Brayton cycles (SR-DBC) represents a promising solution for future space power systems. Effective operation and control of SR-DBC require understanding of their power regulation characteristics. This study established a dynamic model for SR-DBC, from which three power regulation methods were derived: control drum, pump, and bypass valve. An investigation of SR-DBC performance under varying regulation methods elucidated application scenarios for these methods. Findings indicate that at 60 % of rated power generation, control drum regulation achieves the highest efficiency of 16.70 % and rapid response time of 80 s, making it suitable for off-design conditions. Conversely, pump regulation yields a moderate efficiency of 14.87 % but a slower response time of 347 s, primarily due to radiator thermal inertia. Bypass valve regulation exhibits the lowest efficiency at 12.65 % but compensates with the quickest response time of 14 s under reduced power generation conditions. This study provides valuable insights into SR-DBC system operation and control.

Suggested Citation

  • Ma, Wenkui & Yang, Xiaoyong & Wang, Jie, 2024. "Power regulation methods and regulation characteristics of the space reactor direct Brayton cycle with helium-xenon working fluid," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037903
    DOI: 10.1016/j.energy.2024.134012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Xinyu & Zhang, Haochun & Ma, Fangwei & Deng, MingHao & You, Ersheng, 2024. "Thermodynamic, exergoeconomic evaluation and optimization of S–N2O/t-N2O nuclear power cycle for the construction of the lunar base," Energy, Elsevier, vol. 302(C).
    2. Biondi, Alfonso & Toro, Claudia, 2019. "Closed Brayton Cycles for Power Generation in Space: Modeling, simulation and exergy analysis," Energy, Elsevier, vol. 181(C), pages 793-802.
    3. Wang, Yilin & Cheng, Kunlin & Xu, Jing & Jing, Wuxing & Huang, Hongyan & Qin, Jiang, 2024. "Thermodynamic and mass analysis of a novel two-phase liquid metal MHD enhanced energy conversion system for space nuclear power source," Energy, Elsevier, vol. 308(C).
    4. Li, Jingkang & Hu, Zunyan & Jiang, Hongsheng & Guo, Yuchuan & Li, Zeguang & Zhuge, Weilin & Xu, Liangfei & Li, Jianqiu & Ouyang, Minggao, 2023. "Coupled characteristics and performance of heat pipe cooled reactor with closed Brayton cycle," Energy, Elsevier, vol. 280(C).
    5. Sarkar, Jahar, 2010. "Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle," Energy, Elsevier, vol. 35(8), pages 3422-3428.
    6. Kunlin Cheng & Jiahui Li & Jianchi Yu & Jiang Qin & Wuxing Jing, 2023. "Dynamic Characteristics Analysis for a Novel Double-Rotor He-Xe Closed-Brayton-Cycle Space Nuclear Power Generation System," Energies, MDPI, vol. 16(18), pages 1-20, September.
    7. Wenkui Ma & Ping Ye & Yue Gao & Yadong Hao & Yi Yao & Xiaoyong Yang, 2024. "Analysis of the Radiator Loss Safety Boundary of a Space Reactor Gas Turbine Cycle with Multiple PCU Modules," Energies, MDPI, vol. 17(3), pages 1-22, January.
    8. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2024. "Dynamic simulation and analysis of transient characteristics of a thermal-to-electrical conversion system based on supercritical CO2 Brayton cycle in hypersonic vehicles," Applied Energy, Elsevier, vol. 359(C).
    9. Xu, Chi & Kong, Fanli & Yu, Dali & Yu, Jie & Khan, Muhammad Salman, 2021. "Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system," Energy, Elsevier, vol. 222(C).
    10. Miao, Xinyu & Zhang, Haochun & Sun, Wenbo & Wang, Qi & Zhang, Chenxu, 2022. "Optimization of a recompression supercritical nitrous oxide and helium Brayton cycle for space nuclear system," Energy, Elsevier, vol. 242(C).
    11. Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).
    2. Yang, Yuzhuo & Shi, Lingfeng & Yao, Yu & Zhang, Yonghao & He, Jingtao & Tian, Hua & Pei, Gang & Shu, Gequn, 2024. "Supercritical CO2 Brayton cycle for space exploration: New perspectives base on power density analysis," Energy, Elsevier, vol. 313(C).
    3. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    4. Zhang, Zeqin & Zhao, Haocheng & Wang, Chenglong & Guo, Kailun & Su, Guanghui & Tian, Wenxi & Qiu, Suizheng, 2025. "Study on the start-up characteristics of a 100kWe-level nuclear silent heat pipe cooled reactor based on cascaded control," Energy, Elsevier, vol. 314(C).
    5. Zhao, Chengxuan & Yang, Xiao & Yu, Jie & Yang, Minghan & Wang, Jianye & Chen, Shuai, 2023. "Interval type-2 fuzzy logic control for a space nuclear reactor core power system," Energy, Elsevier, vol. 280(C).
    6. Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
    7. Liao, Haoyang & Wang, Xianbo & Xie, Lin & Lu, Ruibo & Zhao, Fulong & Tan, Sichao & Gao, Puzhen & Tian, Ruifeng, 2024. "Thermal-hydraulic characteristics analysis of unprotected accident and protection control strategy for helium-xenon cooled reactor system," Energy, Elsevier, vol. 302(C).
    8. Miao, Xinyu & Zhang, Haochun & Ma, Fangwei & Deng, MingHao & You, Ersheng, 2024. "Thermodynamic, exergoeconomic evaluation and optimization of S–N2O/t-N2O nuclear power cycle for the construction of the lunar base," Energy, Elsevier, vol. 302(C).
    9. Li, Tao & Xiong, Jinbiao & Xie, Qiuxia & Chai, Xiang, 2024. "Performance analysis of heat pipe micro-reactor with Stirling engine based on full-scope multi-physics coupled simulation," Energy, Elsevier, vol. 313(C).
    10. Li, Zhen & Lu, Daogang & Lin, Manjiao & Cao, Qiong, 2024. "Investigation of the thermal-hydraulic characteristics of SCO2 in a modified hybrid airfoil channel," Energy, Elsevier, vol. 308(C).
    11. Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
    12. Meng, Qingqiang & Cao, Lihua & Fang, Minghui & Si, Heyong, 2025. "Dynamic response characteristics of sCO2 mixtures under variable conditions," Energy, Elsevier, vol. 315(C).
    13. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    14. Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
    15. Luo, Qianqian & Luo, Lei & Du, Wei & Jia, QianKun & Yan, Han, 2025. "Performance evaluation of SCO2 Brayton cycles for thermal protection and power generation in hypersonic vehicles," Energy, Elsevier, vol. 315(C).
    16. Alsawy, Tariq & Elsayed, Mohamed L. & Mohammed, Ramy H. & Mesalhy, Osama, 2024. "Accuracy assessment of the turbomachinery performance maps correction models used in dynamic characteristics of supercritical CO2 Brayton power cycle," Energy, Elsevier, vol. 309(C).
    17. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    18. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
    19. Deng, Jiaolong & Guan, Chaoran & Wang, Tianshi & Liu, Xiaojing & Chai, Xiang, 2024. "Evaluation of start-up characteristics for heat pipe-cooled nuclear reactor coupled with recuperated open-air brayton cycle using hardware-in-the-loop," Energy, Elsevier, vol. 301(C).
    20. Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.