IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6257-d1227357.html
   My bibliography  Save this article

A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System

Author

Listed:
  • Nikolaos Chalkiadakis

    (Renewable and Sustainable Energy Lab, School of Chemical & Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
    NCSR ‘Demokritos’, Agia Paraskevi, 15341 Athens, Greece)

  • Emmanuel Stamatakis

    (Institute of Geoenergy/Foundation for Research and Technology—Hellas (IG/FORTH), 73100 Chania, Greece)

  • Melina Varvayanni

    (NCSR ‘Demokritos’, Agia Paraskevi, 15341 Athens, Greece)

  • Athanasios Stubos

    (NCSR ‘Demokritos’, Agia Paraskevi, 15341 Athens, Greece)

  • Georgios Tzamalis

    (NCSR ‘Demokritos’, Agia Paraskevi, 15341 Athens, Greece)

  • Theocharis Tsoutsos

    (Renewable and Sustainable Energy Lab, School of Chemical & Environmental Engineering, Technical University of Crete, 73100 Chania, Greece)

Abstract

Small mοdular reactors (SMRs) are nuclear reactors with a smaller capacity than traditional large-scale nuclear reactors, offering advantages such as increased safety, flexibility, and cost-effectiveness. By producing zero carbon emissions, SMRs represent an interesting alternative for the decarbonization of power grids. Additionally, they present a promising solution for the production of hydrogen by providing large amounts of energy for the electrolysis of water (pink hydrogen). The above hint at the attractiveness of coupling SMRs with hydrogen production and consumption centers, in order to form clusters of applications which use hydrogen as a fuel. This work showcases the techno-economic feasibility of the potential installation of an SMR system coupled with hydrogen production, the case study being the island of Crete. The overall aim of this approach is the determination of the optimal technical characteristics of such a system, as well as the estimation of the potential environmental benefits, in terms of reduction of CO 2 emissions. The aforementioned system, which is also connected to the grid, is designed to serve a portion of the electric load of the island, while producing enough hydrogen to satisfy the needs of the nearby industries and hotels. The results of this work could provide an alternative sustainable approach on how a hydrogen economy, which would interconnect and decarbonize several industrial sectors, could be established on the island of Crete. The proposed systems achieve an LCOE between EUR 0.046/kWh and EUR 0.052/kWh while reducing carbon emissions by more than 5 million tons per year in certain cases.

Suggested Citation

  • Nikolaos Chalkiadakis & Emmanuel Stamatakis & Melina Varvayanni & Athanasios Stubos & Georgios Tzamalis & Theocharis Tsoutsos, 2023. "A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System," Energies, MDPI, vol. 16(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6257-:d:1227357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    2. Dimitris Al. Katsaprakakis & Apostolos Michopoulos & Vasiliki Skoulou & Eirini Dakanali & Aggeliki Maragkaki & Stavroula Pappa & Ioannis Antonakakis & Dimitris Christakis & Constantinos Condaxakis, 2022. "A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece," Energies, MDPI, vol. 15(9), pages 1-49, April.
    3. Vujić, Jasmina & Bergmann, Ryan M. & Škoda, Radek & Miletić, Marija, 2012. "Small modular reactors: Simpler, safer, cheaper?," Energy, Elsevier, vol. 45(1), pages 288-295.
    4. Gollier, Christian & Proult, David & Thais, Francoise & Walgenwitz, Gilles, 2005. "Choice of nuclear power investments under price uncertainty: Valuing modularity," Energy Economics, Elsevier, vol. 27(4), pages 667-685, July.
    5. Emmanuel Stamatakis & Ewald Perwög & Ermis Garyfallos & Mercedes Sanz Millán & Emmanuel Zoulias & Nikolaos Chalkiadakis, 2022. "Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers," Energies, MDPI, vol. 15(2), pages 1-50, January.
    6. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    7. Caralis, George & Christakopoulos, Theofanis & Karellas, Sotirios & Gao, Zhiqiu, 2019. "Analysis of energy storage systems to exploit wind energy curtailment in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 122-139.
    8. Kang-Heon Lee & Min-Gil Kim & Jeong Ik Lee & Phill-Seung Lee, 2015. "Recent Advances in Ocean Nuclear Power Plants," Energies, MDPI, vol. 8(10), pages 1-23, October.
    9. Tzamalis, G. & Zoulias, E.I. & Stamatakis, E. & Varkaraki, E. & Lois, E. & Zannikos, F., 2011. "Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium," Renewable Energy, Elsevier, vol. 36(1), pages 118-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stamatakis, Emmanuel & Zoulias, Emmanuel & Tzamalis, George & Massina, Zoe & Analytis, Vassilis & Christodoulou, Christodoulos & Stubos, Athanasios, 2018. "Metal hydride hydrogen compressors: Current developments & early markets," Renewable Energy, Elsevier, vol. 127(C), pages 850-862.
    2. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    3. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors," Energies, MDPI, vol. 16(13), pages 1-15, July.
    4. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
    5. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    6. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    7. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    8. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    9. Madlener, Reinhard & Stoverink, Simon, 2012. "Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization," Applied Energy, Elsevier, vol. 97(C), pages 124-134.
    10. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    11. Guo, Jian-Xin & Zhu, Kaiwei, 2021. "Implications for enterprise to adopt cleaner technology: From the perspective of energy market and commodity market," Research in International Business and Finance, Elsevier, vol. 57(C).
    12. Zhe Dong, 2014. "Saturated Adaptive Output-Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors," Energies, MDPI, vol. 7(11), pages 1-20, November.
    13. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    14. Erwan Hermawan & Usman Sudjadi, 2022. "Integrated Nuclear-Renewable Energy System for Industrialization in West Nusa Tenggara Province, Indonesia: Economic, Potential Site, and Policy Recommendation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 146-159, July.
    15. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    16. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    17. Roques, F.A. & Savva , N.S., 2006. "Price Cap Regulation and Investment Incentives under Demand Uncertainty," Cambridge Working Papers in Economics 0636, Faculty of Economics, University of Cambridge.
    18. Gérard Mondello, 2011. "Civil Liability, Safety and Nuclear Parks: Is Concentrated Management Better?," Post-Print hal-00727252, HAL.
    19. Jos Balibrea-Iniesta & Antonio S nchez-Soli o & Antonio Lara-Galera, 2015. "Application of Real Options Theory to the Assessment of Public Incentives for Onshore Wind Energy Development in Spain," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 791-800.
    20. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6257-:d:1227357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.