IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2578-d1657317.html
   My bibliography  Save this article

Assessing the Implications of Integrating Small Modular Reactors in Modern Power Systems

Author

Listed:
  • Christos K. Simoglou

    (School of Mechanical Engineering, International Hellenic University, GR 62124 Serres, Greece)

  • Ioannis M. Kaissas

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece)

  • Pandelis N. Biskas

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece)

Abstract

This paper investigates the long-term impact of integrating emerging Small Modular Reactors (SMR) in modern power systems. A chronological simulation of the Greek day-ahead market and real-time balancing market with fine time granularity is conducted for a future 20-year period (2032–2051) under four SMR penetration scenarios using a specialized integrated market simulation software. Simulation results indicate that SMR units can be regarded as a promising electricity generation solution in the forthcoming energy transition landscape. The introduction of up to 3 GW of SMR capacity is projected to significantly decrease reliance on gas imports by up to 62%, reduce carbon emissions by up to 52%, and lower overall electricity costs for end-consumers by up to 21% as compared to a baseline scenario without SMRs. It is anticipated that SMR units are expected to leverage their operating advantages and generally achieve positive financial results when participating directly in the wholesale market. However, their economic viability is highly dependent on their initial capital expenditure and other operating cost components, which at present are highly uncertain.

Suggested Citation

  • Christos K. Simoglou & Ioannis M. Kaissas & Pandelis N. Biskas, 2025. "Assessing the Implications of Integrating Small Modular Reactors in Modern Power Systems," Energies, MDPI, vol. 18(10), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2578-:d:1657317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cany, Camille & Mansilla, Christine & da Costa, Pascal & Mathonnière, Gilles & Duquesnoy, Thierry & Baschwitz, Anne, 2016. "Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix," Energy Policy, Elsevier, vol. 95(C), pages 135-146.
    2. Lynch, Arthur & Perez, Yannick & Gabriel, Sophie & Mathonniere, Gilles, 2022. "Nuclear fleet flexibility: Modeling and impacts on power systems with renewable energy," Applied Energy, Elsevier, vol. 314(C).
    3. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    4. Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
    5. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    6. Karaveli, Abdullah Bugrahan & Soytas, Ugur & Akinoglu, Bulent G., 2015. "Comparison of large scale solar PV (photovoltaic) and nuclear power plant investments in an emerging market," Energy, Elsevier, vol. 84(C), pages 656-665.
    7. Locatelli, Giorgio & Boarin, Sara & Fiordaliso, Andrea & Ricotti, Marco E., 2018. "Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: A techno-economic analysis," Energy, Elsevier, vol. 148(C), pages 494-505.
    8. repec:hal:journl:hal-04295932 is not listed on IDEAS
    9. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    10. Nikolaos Chalkiadakis & Emmanuel Stamatakis & Melina Varvayanni & Athanasios Stubos & Georgios Tzamalis & Theocharis Tsoutsos, 2023. "A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System," Energies, MDPI, vol. 16(17), pages 1-20, August.
    11. Asuega, Anthony & Limb, Braden J. & Quinn, Jason C., 2023. "Techno-economic analysis of advanced small modular nuclear reactors," Applied Energy, Elsevier, vol. 334(C).
    12. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaelson, D. & Jiang, J., 2021. "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Kang, Seong Woo & Yim, Man-Sung, 2023. "Coupled system model analysis for a small modular reactor cogeneration (combined heat and power) application," Energy, Elsevier, vol. 262(PA).
    4. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    5. Stylianos A. Papazis, 2025. "Nuclear–Thermal Power Generation: Multicriteria Optimization of the Economic Sustainability," Sustainability, MDPI, vol. 17(11), pages 1-33, May.
    6. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    7. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    8. Byun, Hyeon-Ho & Yim, Man-Sung, 2025. "Genetic algorithm-based non-synchronous unit-specific optimal load-following control of multi-unit small modular reactor," Energy, Elsevier, vol. 314(C).
    9. Zhang, Ru & Qiu, Leilei & Sun, Peiwei & Wei, Xinyu, 2024. "Research on nuclear reactor power control system of VVER-1000 with thermal energy supply system," Energy, Elsevier, vol. 294(C).
    10. Li, Zhen & Qi, Mingliang & Wang, Renlong & Yan, Xuesong & Yang, Yangyang & Gao, Mingang, 2024. "A novel cost analysis method for accelerator driven advanced nuclear energy system (ADANES) considering uncertainty throughout the R&D cycle," Applied Energy, Elsevier, vol. 360(C).
    11. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    12. Gustavo Alonso, 2025. "Economic Competitiveness of Small Modular Reactors in a Net Zero Policy," Energies, MDPI, vol. 18(4), pages 1-15, February.
    13. Wu, Qingyang & Li, Gen & Liu, Ming & Zhang, Yufeng & Yan, Junjie & Deguchi, Yoshihiro, 2024. "The enhancement of primary frequency regulation ability of combined water and power plant based on nuclear energy: Dynamic modelling and control strategy optimization," Energy, Elsevier, vol. 313(C).
    14. Lynch, Arthur & Perez, Yannick & Gabriel, Sophie & Mathonniere, Gilles, 2022. "Nuclear fleet flexibility: Modeling and impacts on power systems with renewable energy," Applied Energy, Elsevier, vol. 314(C).
    15. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    16. Van Hee, Nick & Peremans, Herbert & Nimmegeers, Philippe, 2024. "Economic potential and barriers of small modular reactors in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    17. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    18. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.
    19. Nicholas, T.E.G. & Davis, T.P. & Federici, F. & Leland, J. & Patel, B.S. & Vincent, C. & Ward, S.H., 2021. "Re-examining the role of nuclear fusion in a renewables-based energy mix," Energy Policy, Elsevier, vol. 149(C).
    20. Bhattacharya, Subhadip & Banerjee, Rangan & Ramadesigan, Venkatasailanathan & Liebman, Ariel & Dargaville, Roger, 2024. "Bending the emission curve ― The role of renewables and nuclear power in achieving a net-zero power system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2578-:d:1657317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.