IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4781-d1662230.html
   My bibliography  Save this article

Nuclear–Thermal Power Generation: Multicriteria Optimization of the Economic Sustainability

Author

Listed:
  • Stylianos A. Papazis

    (Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace, Kimmeria Campus, 67100 Xanthi, Greece)

Abstract

As is well known, due to carbon dioxide emissions, the combustion of lignite in power plants creates environmental pollution. In contrast, nuclear fuels do not produce carbon dioxide emissions. This paper investigates the effects of replacing lignite thermal power plants with small modular nuclear reactors (SMRs) of equivalent rated power and related characteristics. In terms of the emissions criterion, nuclear fuels belong to the same category of clean sources as the sun and wind. A second criterion is the economic one and concerns the operating cost of the nuclear–thermal power plant. Based on the economic criterion, although nuclear reactors require a higher initial invested capital, they have lower fuel costs and lower operating costs than lignite plants, which is important due to their long service life. A third criterion is the effect of the operation mode of an SMR, constant or variable, on the cost of energy production. In terms of the operation mode criterion, two cycles were investigated: the production of a constant amount of energy and the production of a variable amount of energy related to fluctuations in the electric load demand or the operation load-following. Using multi-criteria managerial scenarios, the results of the research demonstrate that the final mean minimal cost of energy generated by hybrid thermal units with small nuclear reactors in constant power output operation is lower than the mean minimal cost of the energy generated in the load-following mode by 2.45%. At the same time, the carbon dioxide emissions in the constant power output operation are lower than those produced in the load-following mode by 2.14%. In conclusion, the constant power output operation of an SMR is more sustainable compared to the load-following operation and also is more sustainable compared to generation by lignite thermal power plants.

Suggested Citation

  • Stylianos A. Papazis, 2025. "Nuclear–Thermal Power Generation: Multicriteria Optimization of the Economic Sustainability," Sustainability, MDPI, vol. 17(11), pages 1-33, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4781-:d:1662230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Locatelli, Giorgio & Boarin, Sara & Pellegrino, Francesco & Ricotti, Marco E., 2015. "Load following with Small Modular Reactors (SMR): A real options analysis," Energy, Elsevier, vol. 80(C), pages 41-54.
    2. Dan Gabriel Cacuci, 2022. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-7, September.
    3. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    4. Son, In Woo & Jeong, Yongju & Son, Seongmin & Park, Jung Hwan & Lee, Jeong Ik, 2022. "Techno-economic evaluation of solar-nuclear hybrid system for isolated grid," Applied Energy, Elsevier, vol. 306(PA).
    5. Bixiong Luo & Li Zhang & Wei Li & Xinwei Zhu & Yongjian Ye & Yanlin Su, 2024. "Study on Conventional Island Retrofit Strategies for Converting Coal-Fired Power Plants to Nuclear Power Stations in China," Energies, MDPI, vol. 17(12), pages 1-26, June.
    6. Dan Gabriel Cacuci, 2022. "Advances in High-Order Sensitivity Analysis for Uncertainty Quantification and Reduction in Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-6, September.
    7. Asuega, Anthony & Limb, Braden J. & Quinn, Jason C., 2023. "Techno-economic analysis of advanced small modular nuclear reactors," Applied Energy, Elsevier, vol. 334(C).
    8. Gustavo Alonso, 2025. "Economic Competitiveness of Small Modular Reactors in a Net Zero Policy," Energies, MDPI, vol. 18(4), pages 1-15, February.
    9. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    10. Alonso, Gustavo & Bilbao, Sama & Valle, Edmundo del, 2016. "Economic competitiveness of small modular reactors versus coal and combined cycle plants," Energy, Elsevier, vol. 116(P1), pages 867-879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammet Saygın, 2025. "Stakeholder Perceptions and Strategic Governance of Large-Scale Energy Projects: A Case Study of Akkuyu Nuclear Power Plant in Türkiye," Sustainability, MDPI, vol. 17(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Alonso, 2025. "Economic Competitiveness of Small Modular Reactors in a Net Zero Policy," Energies, MDPI, vol. 18(4), pages 1-15, February.
    2. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Van Hee, Nick & Peremans, Herbert & Nimmegeers, Philippe, 2024. "Economic potential and barriers of small modular reactors in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    4. Christos K. Simoglou & Ioannis M. Kaissas & Pandelis N. Biskas, 2025. "Assessing the Implications of Integrating Small Modular Reactors in Modern Power Systems," Energies, MDPI, vol. 18(10), pages 1-28, May.
    5. Deng, Jiaolong & Guan, Chaoran & Sun, Yujie & Liu, Xiaojing & Zhang, Tengfei & He, Hui & Chai, Xiang, 2024. "Techno-economic analysis and dynamic performance evaluation of an integrated green concept based on concentrating solar power and a transportable heat pipe-cooled nuclear reactor," Energy, Elsevier, vol. 303(C).
    6. Aman Gupta & Piyush Sabharwall & Paul D. Armatis & Brian M. Fronk & Vivek Utgikar, 2022. "Coupling Chemical Heat Pump with Nuclear Reactor for Temperature Amplification by Delivering Process Heat and Electricity: A Techno-Economic Analysis," Energies, MDPI, vol. 15(16), pages 1-25, August.
    7. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    8. Buenau, K.E. & Sather, N.K. & Arkema, K.K., 2025. "A marine energy and ecosystem service framework for coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    9. Liao, Haoyang & Zhao, Fulong & Qin, Aoxiang & Chen, Baowen & Tan, Sichao & Gao, Puzhen & Tian, Ruifeng, 2025. "Design and characteristics analysis of various residual heat removal schemes and shutdown control strategies for helium-xenon cooled reactor system," Energy, Elsevier, vol. 317(C).
    10. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    11. Song, Qianqian & Wang, Bo & Wang, Zhaohua & Wen, Lei, 2024. "Multi-objective capacity configuration optimization of the combined wind - Storage system considering ELCC and LCOE," Energy, Elsevier, vol. 301(C).
    12. Tianpeng Wang & Ziqi Wu & Wei Xiong & Xunzhang Pan & Xuan Ye & Xiaoguang Liu, 2025. "The Impact of Uranium Resource Constraints on China’s Nuclear Power Development," Energies, MDPI, vol. 18(6), pages 1-16, March.
    13. Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
    14. Chen, Yung-Sheng & Lee, Cheng-Ting & Wang, Yu-Cheng & Chang, Tsai-Ling & Liu, Ta-Kang, 2024. "Research on the implementation of integrated coastal management principles in Taiwan to mitigate disputes related to nuclear waste disposal," Energy Policy, Elsevier, vol. 195(C).
    15. Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.
    16. Truong, Truong P. & Hamasaki, Hiroshi, 2021. "Technology substitution in the electricity sector - a top down approach with bottom up characteristics," Energy Economics, Elsevier, vol. 101(C).
    17. Liu, Hongliang & Song, Yingming & Xiao, Qizhen & Xu, Qiming, 2025. "Neural networks and adaptive finite-time state observer-based preassigned-time fault-tolerant control of load following for a PWR-SMR under CRDM faults and sensor noises," Energy, Elsevier, vol. 323(C).
    18. Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.
    19. Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "Techno-Environmental Evaluation and Optimization of a Hybrid System: Application of Numerical Simulation and Gray Wolf Algorithm in Saudi Arabia," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    20. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4781-:d:1662230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.