IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7821-d1738112.html
   My bibliography  Save this article

Stakeholder Perceptions and Strategic Governance of Large-Scale Energy Projects: A Case Study of Akkuyu Nuclear Power Plant in Türkiye

Author

Listed:
  • Muhammet Saygın

    (Department of Management and Organization, Silifke Vocational School, Mersin University, Silifke, Mersin 33110, Türkiye)

Abstract

The Akkuyu Nuclear Power Plant (NPP) is framed as a flagship of Türkiye’s national low-carbon transition. This study examines how domestic economic actors perceive the project’s socio-economic and environmental impacts, and how those perceptions align with—or diverge from—official assessments and the United Nations Sustainable Development Goals. Using a qualitative phenomenological approach, the research draws on 28 semi-structured interviews with members of the Silifke Chamber of Commerce and Industry Council. This lens captures how locally embedded businesses read the project’s risks and rewards in real time. Four themes stand out. First, respondents see a clear economic uptick—but one that feels time-bound and vulnerable to the project cycle. Second, many feel excluded from decision-making; as a result, their support remains conditional rather than open-ended. Third, participants describe environmental signals as ambiguous, paired with genuine ecological concern. Fourth, skepticism about governance intertwines with sovereignty anxieties, particularly around foreign ownership and control. Overall, while short-term economic benefits are widely acknowledged, support is tempered by procedural exclusion, environmental worry, and distrust of foreign control. Conceptually, the study contributes to energy-justice scholarship by elevating sovereignty as an additional dimension of justice and by highlighting the link between being shut out of processes and perceiving higher environmental risk. Policy implications follow directly: create robust, domestic communication channels; strengthen participatory governance so local actors have a real voice; and embed nuclear projects within regional development strategies so economic gains are durable and broadly shared.

Suggested Citation

  • Muhammet Saygın, 2025. "Stakeholder Perceptions and Strategic Governance of Large-Scale Energy Projects: A Case Study of Akkuyu Nuclear Power Plant in Türkiye," Sustainability, MDPI, vol. 17(17), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7821-:d:1738112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stacey L. Dolan & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 136-154, April.
    2. Heffron, Raphael J. & McCauley, Darren, 2017. "The concept of energy justice across the disciplines," Energy Policy, Elsevier, vol. 105(C), pages 658-667.
    3. McCauley, Darren & Heffron, Raphael, 2018. "Just transition: Integrating climate, energy and environmental justice," Energy Policy, Elsevier, vol. 119(C), pages 1-7.
    4. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    5. Johannes (Joost) Platje & Markus Will & Monika Paradowska & Ynte K. van Dam, 2022. "Socioeconomic Paradigms and the Perception of System Risks: A Study of Attitudes towards Nuclear Power among Polish Business Students," Energies, MDPI, vol. 15(19), pages 1-15, October.
    6. Sovacool, Benjamin K. & Dworkin, Michael H., 2015. "Energy justice: Conceptual insights and practical applications," Applied Energy, Elsevier, vol. 142(C), pages 435-444.
    7. Gonzalo Sánchez-Tabernero & Concepción Muñoz-Sosa & Antonio R. Hidalgo-Muñoz & José I. Galán & Carmen Tabernero, 2025. "Understanding the Causes of Social Acceptance and Rejection of a Uranium Mine Development Project in Northwestern Spain," Sustainability, MDPI, vol. 17(2), pages 1-17, January.
    8. Roman Seidl & Cord Drögemüller, 2024. "Procedural fairness and safety in the acceptance of nuclear waste disposal in Germany: an empirical study," Journal of Risk Research, Taylor & Francis Journals, vol. 27(8), pages 969-985, November.
    9. John J. Burkhardt & Garvin Heath & Elliot Cohen, 2012. "Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 93-109, April.
    10. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    11. Roger E. Kasperson & Ortwin Renn & Paul Slovic & Halina S. Brown & Jacque Emel & Robert Goble & Jeanne X. Kasperson & Samuel Ratick, 1988. "The Social Amplification of Risk: A Conceptual Framework," Risk Analysis, John Wiley & Sons, vol. 8(2), pages 177-187, June.
    12. Cord Drögemüller & Roman Seidl & Clemens Walther, 2025. "Social Values, Individual Judgments and Acceptance: The Case of High-Level Radioactive Waste in Germany," Sustainability, MDPI, vol. 17(12), pages 1-16, June.
    13. Stylianos A. Papazis, 2025. "Nuclear–Thermal Power Generation: Multicriteria Optimization of the Economic Sustainability," Sustainability, MDPI, vol. 17(11), pages 1-33, May.
    14. Michael Whitaker & Garvin A. Heath & Patrick O’Donoughue & Martin Vorum, 2012. "Life Cycle Greenhouse Gas Emissions of Coal‐Fired Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 53-72, April.
    15. Van Uffelen, N. & Taebi, B. & Pesch, Udo, 2024. "Revisiting the energy justice framework: Doing justice to normative uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    17. Kacper Szulecki & Indra Overland, 2023. "Russian nuclear energy diplomacy and its implications for energy security in the context of the war in Ukraine," Nature Energy, Nature, vol. 8(4), pages 413-421, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Bórawski & Aneta Bełdycka-Bórawska & Bogdan Klepacki & Lisa Holden & Tomasz Rokicki & Andrzej Parzonko, 2024. "Changes in Gross Nuclear Electricity Production in the European Union," Energies, MDPI, vol. 17(14), pages 1-31, July.
    2. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    3. Gamarra, A.R. & Banacloche, S. & Lechon, Y. & del Río, P., 2023. "Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Yin Li & Xu Wang & Qi Qin, 2025. "Comparative Analysis of Carbon Tax and Carbon Market Strategies for Facilitating Carbon Neutrality in China’s Coal-Fired Electricity Sector," Sustainability, MDPI, vol. 17(5), pages 1-25, February.
    5. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    6. Atif Ali & Theodore W. Koch & Timothy A. Volk & Robert W. Malmsheimer & Mark H. Eisenbies & Danielle Kloster & Tristan R. Brown & Nehan Naim & Obste Therasme, 2022. "The Environmental Life Cycle Assessment of Electricity Production in New York State from Distributed Solar Photovoltaic Systems," Energies, MDPI, vol. 15(19), pages 1-20, October.
    7. Steffi Weyand & Carolin Wittich & Liselotte Schebek, 2019. "Environmental Performance of Emerging Photovoltaic Technologies: Assessment of the Status Quo and Future Prospects Based on a Meta-Analysis of Life-Cycle Assessment Studies," Energies, MDPI, vol. 12(22), pages 1-25, November.
    8. Lisa May & Martin Werz, 2025. "A State-of-the-Art Review on Nuclear Reactor Concepts and Associated Advanced Manufacturing Techniques," Energies, MDPI, vol. 18(16), pages 1-36, August.
    9. Quyen Le Luu & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino & Maria Anna Cusenza & Vincenzo Franzitta, 2020. "A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector," Energies, MDPI, vol. 13(12), pages 1-19, June.
    10. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    11. Wang, An & Tu, Ran & Gai, Yijun & Pereira, Lucas G. & Vaughan, J. & Posen, I. Daniel & Miller, Eric J. & Hatzopoulou, Marianne, 2020. "Capturing uncertainty in emission estimates related to vehicle electrification and implications for metropolitan greenhouse gas emission inventories," Applied Energy, Elsevier, vol. 265(C).
    12. Timo Busch & Matthew Johnson & Thomas Pioch, 2022. "Corporate carbon performance data: Quo vadis?," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 350-363, February.
    13. Jiang, Junxia & Gao, Xiaoqing & Lv, Qingquan & Li, Zhenchao & Li, Peidu, 2021. "Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas," Renewable Energy, Elsevier, vol. 174(C), pages 157-169.
    14. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    15. Roggenburg, Michael & Warsinger, David M. & Bocanegra Evans, Humberto & Castillo, Luciano, 2021. "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, Elsevier, vol. 291(C).
    16. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    17. Roberts, M.B. & Bruce, A. & MacGill, I., 2019. "Opportunities and barriers for photovoltaics on multi-unit residential buildings: Reviewing the Australian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 95-110.
    18. Alexandra Devlin & Jannik Kossen & Haulwen Goldie-Jones & Aidong Yang, 2023. "Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Lunardi, Marina M. & Needell, David R. & Bauser, Haley & Phelan, Megan & Atwater, Harry A. & Corkish, Richard, 2019. "Life Cycle Assessment of tandem LSC-Si devices," Energy, Elsevier, vol. 181(C), pages 1-10.
    20. Robin Taylor & William Bodel & Laurence Stamford & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts," Energies, MDPI, vol. 15(4), pages 1-35, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7821-:d:1738112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.