IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp494-505.html
   My bibliography  Save this article

Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: A techno-economic analysis

Author

Listed:
  • Locatelli, Giorgio
  • Boarin, Sara
  • Fiordaliso, Andrea
  • Ricotti, Marco E.

Abstract

Load following is the possibility for a power plant to adjust its power output according to the demand and electricity price fluctuation throughout the day. In nuclear power plants, the adjustment is usually done by inserting control rods into the reactor pressure vessel. This operation is inherently inefficient as nuclear power cost structure is composed almost entirely of sunk or fixed costs; therefore, lowering the power output, does not significantly reduce operating expenses and the plant is thermo-mechanical stressed. A more attractive option is to maintain the primary circuit at full power and use the excess power for cogeneration. This paper aims to present the techno-economic feasibility of nuclear power plants load following by cogenerating hydrogen. The paper assesses Small Modular nuclear Reactors (SMRs) coupled with: alkaline water electrolysis, high-temperature steam electrolysis, sulphur-iodine cycle. The analysis shows that in the medium term hydrogen from alkaline water electrolysis can be produced at competitive prices. High-temperature steam electrolysis and even more the sulphur-iodine cycle proved to be attractive because of their capability to produce hydrogen with higher efficiency. However, the coupling of SMRs and hydrogen facilities working at high temperature (about 800 °C) still requires substantial R&D to reach commercialisation.

Suggested Citation

  • Locatelli, Giorgio & Boarin, Sara & Fiordaliso, Andrea & Ricotti, Marco E., 2018. "Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: A techno-economic analysis," Energy, Elsevier, vol. 148(C), pages 494-505.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:494-505
    DOI: 10.1016/j.energy.2018.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218300471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Locatelli, Giorgio & Boarin, Sara & Pellegrino, Francesco & Ricotti, Marco E., 2015. "Load following with Small Modular Reactors (SMR): A real options analysis," Energy, Elsevier, vol. 80(C), pages 41-54.
    2. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    3. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    4. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nian, Victor & Ghori, Amjad & Guerra, Eddie M. & Locatelli, Giorgio & Murphy, Paul, 2022. "Accelerating safe small modular reactor development in Southeast Asia," Utilities Policy, Elsevier, vol. 74(C).
    2. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    3. Ma, Quan & Wei, Xinyu & Qing, Junyan & Jiao, Wen & Xu, Risheng, 2019. "Load following of SMR based on a flexible load," Energy, Elsevier, vol. 183(C), pages 733-746.
    4. Mignacca, Benito & Locatelli, Giorgio & Sainati, Tristano, 2020. "Deeds not words: Barriers and remedies for Small Modular nuclear Reactors," Energy, Elsevier, vol. 206(C).
    5. Nian, Victor & Mignacca, Benito & Locatelli, Giorgio, 2022. "Policies toward net-zero: Benchmarking the economic competitiveness of nuclear against wind and solar energy," Applied Energy, Elsevier, vol. 320(C).
    6. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    8. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    9. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.
    10. Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
    11. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    12. Choong-koo Chang & Harold Chisano Oyando, 2022. "Review of the Requirements for Load Following of Small Modular Reactors," Energies, MDPI, vol. 15(17), pages 1-12, August.
    13. Worsham, Elizabeth K. & Terry, Stephen D., 2022. "Static and dynamic modeling of steam integration for a NuScale small modular reactor and pulp and paper mill coupling for carbon-neutral manufacturing," Applied Energy, Elsevier, vol. 325(C).
    14. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    15. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    16. Son, In Woo & Jeong, Yongju & Son, Seongmin & Park, Jung Hwan & Lee, Jeong Ik, 2022. "Techno-economic evaluation of solar-nuclear hybrid system for isolated grid," Applied Energy, Elsevier, vol. 306(PA).
    17. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    18. Michaelson, D. & Jiang, J., 2021. "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    2. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    3. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    4. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Valuing the option to prototype: A case study with Generation Integrated Energy Storage," Energy, Elsevier, vol. 217(C).
    6. Maurizio Sibilla & Esra Kurul, 2023. "Towards Social Understanding of Energy Storage Systems—A Perspective," Energies, MDPI, vol. 16(19), pages 1-11, September.
    7. Chen, Siyuan & Zhang, Qi & Wang, Ge & Zhu, Lijing & Li, Yan, 2018. "Investment strategy for underground gas storage facilities based on real option model considering gas market reform in China," Energy Economics, Elsevier, vol. 70(C), pages 132-142.
    8. Lai, Chun Sing & Locatelli, Giorgio & Pimm, Andrew & Tao, Yingshan & Li, Xuecong & Lai, Loi Lei, 2019. "A financial model for lithium-ion storage in a photovoltaic and biogas energy system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    10. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    11. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    12. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    13. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    14. Vecchi, Andrea & Naughton, James & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated ther," Energy, Elsevier, vol. 200(C).
    15. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    16. Jülch, Verena, 2016. "Comparison of electricity storage options using levelized cost of storage (LCOS) method," Applied Energy, Elsevier, vol. 183(C), pages 1594-1606.
    17. Gasim Albadawi & Shengfei Wang & Xingdi Cao, 2018. "Numerical and Experimental Study of Thermal Stratification Outside a Small SMR Containment Vessel," Sustainability, MDPI, vol. 10(7), pages 1-8, July.
    18. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    19. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    20. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:494-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.