IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5493-d1198269.html
   My bibliography  Save this article

A Systematic Heat Recovery Approach for Designing Integrated Heating, Cooling, and Ventilation Systems for Greenhouses

Author

Listed:
  • Mohsen Ghaderi

    (Department of Mechanical Engineering, Université de Sherbrooke, 2500 Boul. de l’ Université, Sherbrooke, QC J1K 2R1, Canada)

  • Christopher Reddick

    (Department of Mechanical Engineering, Université de Sherbrooke, 2500 Boul. de l’ Université, Sherbrooke, QC J1K 2R1, Canada)

  • Mikhail Sorin

    (Department of Mechanical Engineering, Université de Sherbrooke, 2500 Boul. de l’ Université, Sherbrooke, QC J1K 2R1, Canada)

Abstract

Ventilation heat loss is one of the most important factors contributing to energy performance of greenhouses. This paper suggests a systematic method based on dynamic pinch analysis (PA) to design an integrated heating, cooling, and ventilation system that uses ventilation waste heat in a cost-effective and energy efficient way. A heat recovery system including an air handling unit, borehole thermal storage, and a heat pump is proposed to investigate all heat integration scenarios for an entire year. In the first step, the heat integration scenarios are reduced to a few typical days using a clustering technique. Then, a generic methodology for designing a heat exchanger network (HEN) for a dynamic system, ensuring both direct and indirect heat recovery, is presented and a set of HENs are designed according to the conditions of typical days. Afterwards, the best HEN design is selected among all design alternatives using a techno-economic analysis. The whole procedure is applied to a commercial greenhouse and the best HEN configuration and required equipment sizes are calculated. It is shown that the best-performing design for the greenhouse under study produces primary energy savings of 57%, resulting in the shortest payback period of 9.5 years among all design alternatives.

Suggested Citation

  • Mohsen Ghaderi & Christopher Reddick & Mikhail Sorin, 2023. "A Systematic Heat Recovery Approach for Designing Integrated Heating, Cooling, and Ventilation Systems for Greenhouses," Energies, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5493-:d:1198269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    2. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
    4. Wang, Zhiqi & Hu, Yanhua & Xia, Xiaoxia & Zuo, Qingsong & Zhao, Bin & Li, Zhixiong, 2020. "Thermo-economic selection criteria of working fluid used in dual-loop ORC for engine waste heat recovery by multi-objective optimization," Energy, Elsevier, vol. 197(C).
    5. Hsieh, Jui-Ching & Lai, Chun-Chieh & Chen, Yen-Hsun, 2022. "Thermoeconomic analysis of a waste heat recovery system with fluctuating flue gas scenario," Energy, Elsevier, vol. 258(C).
    6. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    7. Xu, Yingjie & Mao, Chengbin & Huang, Yuangong & Shen, Xi & Xu, Xiaoxiao & Chen, Guangming, 2021. "Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis," Energy, Elsevier, vol. 216(C).
    8. Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jialu Ling & Xinjian Chen, 2024. "Energy and Economic Analysis of a New Combination Cascade Waste Heat Recovery System of a Waste-to-Energy Plant," Energies, MDPI, vol. 17(20), pages 1-16, October.
    2. Shafiee Roudbari, Erfan & Kantor, Ivan & Menon, Ramanunni Parakkal & Eicker, Ursula, 2024. "Optimization-based decision support for designing industrial symbiosis district energy systems under uncertainty," Applied Energy, Elsevier, vol. 367(C).
    3. Paweł Obstawski & Jacek Słoma & Krzysztof Górnicki & Michał Awtoniuk, 2025. "Process Line for Waste Heat Recovery in the Production of Stretch Film Based on Compressor Heat Pumps with Environmentally Friendly Refrigerants," Energies, MDPI, vol. 18(1), pages 1-22, January.
    4. Ahmadfard, Mohammadamin & Baniasadi, Ehsan, 2025. "Borehole thermal energy storage systems: A comprehensive review using bibliometric and qualitative tools," Applied Energy, Elsevier, vol. 387(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    2. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    4. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    5. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    6. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    7. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    8. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    9. Guo, Siyi & Wei, Ziqing & Yin, Yaling & Zhai, Xiaoqiang, 2025. "A physics-guided RNN-KAN for multi-step prediction of heat pump operation states," Energy, Elsevier, vol. 320(C).
    10. Ping, Xu & Yao, Baofeng & Zhang, Hongguang & Yang, Fubin, 2021. "Thermodynamic analysis and high-dimensional evolutionary many-objective optimization of dual loop organic Rankine cycle (DORC) for CNG engine waste heat recovery," Energy, Elsevier, vol. 236(C).
    11. Ahmed Al-Zahrani, 2023. "Investigating New Environmentally Friendly Zeotropic Refrigerants as Possible Replacements for Carbon Dioxide (CO 2 ) in Car Air Conditioners," Sustainability, MDPI, vol. 16(1), pages 1-28, December.
    12. Andrea Colantoni & Danilo Monarca & Massimo Cecchini & Enrico Maria Mosconi & Stefano Poponi, 2018. "Small-Scale Energy Conversion of Agro-Forestry Residues for Local Benefits and European Competitiveness," Sustainability, MDPI, vol. 11(1), pages 1-12, December.
    13. Li, Tailu & Zhang, Yao & Wang, Jingyi & Jin, Fengyun & Gao, Ruizhao, 2024. "Techno-economic and environmental performance of a novel thermal station characterized by electric power generation recovery as by-product," Renewable Energy, Elsevier, vol. 221(C).
    14. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
    15. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    17. Wang, Shukun & Liu, Zuming & Liu, Chao & Wang, Xiaonan, 2022. "Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems," Energy, Elsevier, vol. 258(C).
    18. Baofeng Yao & Xu Ping & Hongguang Zhang, 2021. "Dynamic Response Characteristics Analysis and Energy, Exergy, and Economic (3E) Evaluation of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine Waste Heat Recovery," Energies, MDPI, vol. 14(19), pages 1-32, September.
    19. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    20. Yao, Haoyi & Liang, Jingkang & Wang, Yunfeng & Li, Ming & Fan, Fangling & Ma, Xun & Xiao, Xin, 2025. "The influence of photovoltaic modules on the greenhouse micro-environment - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5493-:d:1198269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.