IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2582-d785347.html
   My bibliography  Save this article

Bioethanol Production in Poland in the Context of Sustainable Development-Current Status and Future Prospects

Author

Listed:
  • Arkadiusz Piwowar

    (Faculty of Economics and Finance, Wroclaw University of Economics and Business, Komandorska Street 118/120, 53-345 Wrocław, Poland)

  • Maria Dzikuć

    (Faculty of Economics and Management, University of Zielona Góra, Licealna Street 9, 65-417 Zielona Góra, Poland)

Abstract

The high dependence on imported fuels, the need to reduce greenhouse gas (GHG) emissions and the need to develop a low-carbon economy are reasons for the development of the renewable energy market in Poland. The wider use of biofuels can be a method for reducing oil dependence and reducing CO 2 emission. Opportunities to reduce emissions and meet international requirements in the field of environmental protection are seen, among others, in the development of the production and greater use of biocomponents, including bioethanol. This article presents the current state of development in the area of bioethanol production in Poland. An outline of legal regulations in the examined area and statistical data, as well as the largest producers and their production capacity, are presented. The basic time range of analyses covered the years 2015–2019. According to the analyses, liquid biofuels in Poland are used on a small scale, although over 2015–2019, the production of bioethanol as a biocomponent in motor fuels increased by 43,537 tonnes. However, production potential is still underused. In recent years, there have been major changes in the structure of the use of raw materials for bioethanol production. The share of maize has significantly decreased (although it is still dominant in the consumption structure) in favour of waste raw materials.

Suggested Citation

  • Arkadiusz Piwowar & Maria Dzikuć, 2022. "Bioethanol Production in Poland in the Context of Sustainable Development-Current Status and Future Prospects," Energies, MDPI, vol. 15(7), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2582-:d:785347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    2. Amigun, Bamikole & Petrie, Daniel & Görgens, Johann, 2011. "Economic risk assessment of advanced process technologies for bioethanol production in South Africa: Monte Carlo analysis," Renewable Energy, Elsevier, vol. 36(11), pages 3178-3186.
    3. Dorota Burchart-Korol & Magdalena Gazda-Grzywacz & Katarzyna Zarębska, 2020. "Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review," Energies, MDPI, vol. 13(11), pages 1-16, June.
    4. Emily Barrett Lydgate, 2012. "Biofuels, Sustainability, and Trade-Related Regulatory Chill," Journal of International Economic Law, Oxford University Press, vol. 15(1), pages 157-180, March.
    5. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    6. Maciej Dzikuć & Rafał Miśko & Szymon Szufa, 2021. "Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland," Energies, MDPI, vol. 14(11), pages 1-12, June.
    7. Pacini, Henrique & Assunção, Lucas & van Dam, Jinke & Toneto, Rudinei, 2013. "The price for biofuels sustainability," Energy Policy, Elsevier, vol. 59(C), pages 898-903.
    8. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    9. Pacini, Henrique & Silveira, Semida, 2011. "Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden," Energy Policy, Elsevier, vol. 39(11), pages 6936-6942.
    10. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    11. Bracco, Stefania, 2015. "Effectiveness of EU biofuels sustainability criteria in the context of land acquisitions in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 130-143.
    12. Robert Ackrill & Adrian Kay, 2011. "EU Biofuels Sustainability Standards and Certification Systems – How to Seek WTO‐Compatibility," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(3), pages 551-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Czech & Jerzy Lewczuk & Leonas Ustinovichius & Robertas Kontrimovičius, 2022. "Multi-Criteria Assessment of Transport Sustainability in Chosen European Union Countries: A Dynamic Approach," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    2. Anna Sobczak & Ewa Chomać-Pierzecka & Andrzej Kokiel & Monika Różycka & Jacek Stasiak & Dariusz Soboń, 2022. "Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany," Energies, MDPI, vol. 15(14), pages 1-18, July.
    3. Waldemar Izdebski & Michał Izdebski & Katarzyna Kosiorek, 2023. "Evaluation of Economic Possibilities of Production of Second-Generation Spirit Fuels for Internal Combustion Engines in Poland," Energies, MDPI, vol. 16(2), pages 1-21, January.
    4. Maciej Dzikuć & Arkadiusz Piwowar, 2022. "Economic Aspects of Low Carbon Development," Energies, MDPI, vol. 15(14), pages 1-3, July.
    5. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    6. Małgorzata Stec & Mariola Grzebyk, 2022. "Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Sarah L. Stattman & Aarti Gupta & Lena Partzsch & Peter Oosterveer, 2018. "Toward Sustainable Biofuels in the European Union? Lessons from a Decade of Hybrid Biofuel Governance," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    3. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    4. Gamborg, Christian & Anker, Helle Tegner & Sandøe, Peter, 2014. "Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity," Energy Policy, Elsevier, vol. 69(C), pages 326-333.
    5. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    7. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    8. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    9. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    10. Inge Stupak & Jamie Joudrey & C. Tattersall Smith & Luc Pelkmans & Helena Chum & Annette Cowie & Oskar Englund & Chun Sheng Goh & Martin Junginger, 2016. "A global survey of stakeholder views and experiences for systems needed to effectively and efficiently govern sustainability of bioenergy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 89-118, January.
    11. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    12. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Energy, Elsevier, vol. 155(C), pages 1032-1046.
    13. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    14. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Pannicke, Nadine & Gawe, Erik & Hagemann, Nina & Purkus, Alexandra & Strunz, Sebastian, 2015. "The Political Economy of Fostering a Wood-based Bioeconomy in Germany," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(04), December.
    16. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    17. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    18. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    19. James Thurlow & Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincón, 2016. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 153-171, June.
    20. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2582-:d:785347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.