IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p739-d728864.html
   My bibliography  Save this article

Optimization of Active Power Losses in Smart Grids Using Photovoltaic Power Plants

Author

Listed:
  • Daniel Pál

    (Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Kosice, Slovakia)

  • Ľubomír Beňa

    (Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Kosice, Slovakia
    Department of Power Electronics and Power Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Michal Kolcun

    (Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Kosice, Slovakia)

  • Zsolt Čonka

    (Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Kosice, Slovakia)

Abstract

This article addresses the reduction of power losses in smart grids. Two optimization algorithms are used in this article. The first method is the enumerative method. The second method of the optimization calculation is based on the self-organizing migrating algorithm. In the first step, the network parameters are calculated based on the input data, and then the target function is determined. In this article, the target function is used to reduce the active power losses that occur during the operation of an electric network. More specifically, we attempt to determine the reactive power with the enumerative and SOMA algorithms to reduce the value of the active power losses. This article intends to illustrate the differences between the selected optimization algorithms. As observed, the optimization algorithm determines the computation time.

Suggested Citation

  • Daniel Pál & Ľubomír Beňa & Michal Kolcun & Zsolt Čonka, 2022. "Optimization of Active Power Losses in Smart Grids Using Photovoltaic Power Plants," Energies, MDPI, vol. 15(3), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:739-:d:728864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Bouffard, François & Kirschen, Daniel S., 2008. "Centralised and distributed electricity systems," Energy Policy, Elsevier, vol. 36(12), pages 4504-4508, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    2. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    3. Eberhard Rothfuß & Festus Boamah, 2020. "Politics and (Self)-Organisation of Electricity System Transitions in a Global North–South Perspective," Politics and Governance, Cogitatio Press, vol. 8(3), pages 162-172.
    4. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    5. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    6. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    7. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    8. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    9. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    10. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Ling, Wen Choong & Verasingham, Arati Banu & Andiappan, Viknesh & Wan, Yoke Kin & Chew, Irene M.L. & Ng, Denny K.S., 2019. "An integrated mathematical optimisation approach to synthesise and analyse a bioelectricity supply chain network," Energy, Elsevier, vol. 178(C), pages 554-571.
    12. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    13. Darby, Sarah J., 2020. "Demand response and smart technology in theory and practice: Customer experiences and system actors," Energy Policy, Elsevier, vol. 143(C).
    14. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    15. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    16. Britta Klagge & Clemens Greiner & David Greven & Chigozie Nweke-Eze, 2020. "Cross-Scale Linkages of Centralized Electricity Generation: Geothermal Development and Investor–Community Relations in Kenya," Politics and Governance, Cogitatio Press, vol. 8(3), pages 211-222.
    17. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Almeshqab, Fatema & Ustun, Taha Selim, 2019. "Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 35-53.
    19. Taehwa Lee, 2019. "Which citizenship do you mean? The case of the Seokkwan Doosan apartment complex in Seoul," Energy & Environment, , vol. 30(1), pages 81-90, February.
    20. Matthias Kühnbach & Felix Guthoff & Anke Bekk & Ludger Eltrop, 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System," Energies, MDPI, vol. 13(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:739-:d:728864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.