IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9601-d1006876.html
   My bibliography  Save this article

The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources

Author

Listed:
  • Marek Wieruszewski

    (Department of Wood-Based Materials, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-627 Poznań, Poland)

  • Katarzyna Mydlarz

    (Department of Law and Organization of Agribusiness Enterprises, Faculty of Economics, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland)

Abstract

One of the bases of the European policy and energy strategy is the biomass and bioenergy obtained from it. It is estimated that by 2023, the annual demand for biomass will have increased from the current level of 7 EJ to 10 EJ. There are significant differences between estimates of the bioenergy potential due to the fact that the authors of publications do not use consistent methodology and assumptions. Forest biomass, agricultural residues, and energy crops are the three main sources of biomass for energy production. Energy crops are likely to become the most important source of biomass. Land use and its changes are a key issue in the sustainable production of bioenergy as the availability of biomass determines its potential for energy security. This article is a review of the latest publications on the bioenergy potential of the member-states of the European Union. The consumption of energy and its potential were presented, with a special focus on renewable sources, especially biomass. The potential of biomass resources was presented and the types of biomass and its sources of origin were indicated. The research was conducted on the member-states of the European Union, whose policy is based on long-term development from the dependence on fossil resources to the dominance of renewable resources. As results from the research, in recent years, there has been a significant increase in the potential of both forest biomass (from 4.8 EJ per annum to the forecasted 15 EJ per annum) and agricultural biomass from (from 2.3 EJ per annum to the forecasted 7 EJ per annum). The increase in the demand for energy biomass in the EU member-states is balanced by partial imports from non-EU countries.

Suggested Citation

  • Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9601-:d:1006876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janiszewska, Dorota & Ossowska, Luiza, 2018. "Diversification of European Union Member States Due to the Production of Renewable Energy from Agriculture and Forestry," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 18(33, Part ), June.
    2. Katarzyna Mydlarz & Marek Wieruszewski, 2022. "Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes," Energies, MDPI, vol. 15(4), pages 1-13, February.
    3. Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    4. Panoutsou, Calliope & Eleftheriadis, John & Nikolaou, Anastasia, 2009. "Biomass supply in EU27 from 2010 to 2030," Energy Policy, Elsevier, vol. 37(12), pages 5675-5686, December.
    5. Marek Wieruszewski & Aleksandra Górna & Katarzyna Mydlarz & Krzysztof Adamowicz, 2022. "Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material," Energies, MDPI, vol. 15(13), pages 1-17, July.
    6. Mark E. Capron & Jim R. Stewart & Antoine de Ramon N’Yeurt & Michael D. Chambers & Jang K. Kim & Charles Yarish & Anthony T. Jones & Reginald B. Blaylock & Scott C. James & Rae Fuhrman & Martin T. She, 2020. "Restoring Pre-Industrial CO 2 Levels While Achieving Sustainable Development Goals," Energies, MDPI, vol. 13(18), pages 1-30, September.
    7. Patricia Gurria Albusac & Hugo Gonzalez Hermoso & Tevecia Ronzon & Saulius Tamosiunas & Raul Lopez & Sara Garcia Condado & Giulia Ronchetti & Jordi Guillen & Manjola Banja & Gianluca Fiore & Robert M’, 2020. "Biomass flows in the European Union: EU Biomass Flows tool, version 2020," JRC Research Reports JRC122379, Joint Research Centre.
    8. Leonardo Rivera-Cadavid & Pablo Cesar Manyoma-Velásquez & Diego F. Manotas-Duque, 2019. "Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    9. Emma Hakala & Ville Lähde & Antti Majava & Tero Toivanen & Tere Vadén & Paavo Järvensivu & Jussi T. Eronen, 2019. "Northern Warning Lights: Ambiguities of Environmental Security in Finland and Sweden," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    10. Gokcol, Cihan & Dursun, Bahtiyar & Alboyaci, Bora & Sunan, Erkan, 2009. "Importance of biomass energy as alternative to other sources in Turkey," Energy Policy, Elsevier, vol. 37(2), pages 424-431, February.
    11. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    12. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    13. Uris, María & Linares, José Ignacio & Arenas, Eva, 2017. "Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain," Energy, Elsevier, vol. 133(C), pages 969-985.
    14. Fabian Stenzel & Peter Greve & Wolfgang Lucht & Sylvia Tramberend & Yoshihide Wada & Dieter Gerten, 2021. "Irrigation of biomass plantations may globally increase water stress more than climate change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    16. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    17. Fujino, Junichi & Yamaji, Kenji & Yamamoto, Hiromi, 1999. "Biomass-Balance Table for evaluating bioenergy resources," Applied Energy, Elsevier, vol. 63(2), pages 75-89, June.
    18. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    19. Spyridon Alatzas & Konstantinos Moustakas & Dimitrios Malamis & Stergios Vakalis, 2019. "Biomass Potential from Agricultural Waste for Energetic Utilization in Greece," Energies, MDPI, vol. 12(6), pages 1-20, March.
    20. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    21. da Costa, Antonio Carlos Augusto & Junior, Nei Pereira & Aranda, Donato Alexandre Gomes, 2010. "The situation of biofuels in Brazil: New generation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3041-3049, December.
    22. M. Jean Blair & Bruno Gagnon & Andrew Klain & Biljana Kulišić, 2021. "Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals," Land, MDPI, vol. 10(2), pages 1-28, February.
    23. Hamelin, Lorie & Naroznova, Irina & Wenzel, Henrik, 2014. "Environmental consequences of different carbon alternatives for increased manure-based biogas," Applied Energy, Elsevier, vol. 114(C), pages 774-782.
    24. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julija Konstantinavičienė, 2023. "Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development," Sustainability, MDPI, vol. 15(18), pages 1, September.
    2. Dan Yu & Caihong Zhang & Siyi Wang & Lan Zhang, 2023. "Evolutionary Game and Simulation Analysis of Power Plant and Government Behavior Strategies in the Coupled Power Generation Industry of Agricultural and Forestry Biomass and Coal," Energies, MDPI, vol. 16(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.
    2. Dorel Dusmanescu & Jean Andrei & Gheorghe H. Popescu & Elvira Nica & Mirela Panait, 2016. "Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region," Energies, MDPI, vol. 9(9), pages 1-19, August.
    3. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    4. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    5. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    6. Scaramuzzino, Chiara & Garegnani, Giulia & Zambelli, Pietro, 2019. "Integrated approach for the identification of spatial patterns related to renewable energy potential in European territories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 1-13.
    7. Bastian Winkler & Iris Lewandowski & Angelika Voss & Stefanie Lemke, 2018. "Transition towards Renewable Energy Production? Potential in Smallholder Agricultural Systems in West Bengal, India," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    8. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    9. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    11. Felix Creutzig & Christoph von Stechow & David Klein & Carol Hunsberger & Nico Bauer & Alexander Popp & Ottmar Edenhofer, 2012. "Can Bioenergy Assessments Deliver?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    12. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.
    13. Moriarty, Patrick & Honnery, Damon, 2011. "Is there an optimum level for renewable energy?," Energy Policy, Elsevier, vol. 39(5), pages 2748-2753, May.
    14. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    15. Bilgen, Selçuk & Keleş, Sedat & Sarıkaya, İkbal & Kaygusuz, Kamil, 2015. "A perspective for potential and technology of bioenergy in Turkey: Present case and future view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 228-239.
    16. Negro, Viviana & Ruggeri, Bernardo & Fino, Debora & Tonini, Davide, 2017. "Life cycle assessment of orange peel waste management," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 148-158.
    17. Dorota Janiszewska & Luiza Ossowska, 2023. "Spatial Differentiation of Agricultural Biomass Potential in Polish Voivodeships," Energies, MDPI, vol. 16(19), pages 1-16, September.
    18. Garegnani, Giulia & Sacchelli, Sandro & Balest, Jessica & Zambelli, Pietro, 2018. "GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys," Applied Energy, Elsevier, vol. 216(C), pages 709-723.
    19. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    20. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9601-:d:1006876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.