IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p703-d77112.html
   My bibliography  Save this article

Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region

Author

Listed:
  • Dorel Dusmanescu

    (Petroleum & Gas University of Ploiesti, 39 Bucuresti Blvd., Prahova 100680, Romania)

  • Jean Andrei

    (Petroleum & Gas University of Ploiesti, 39 Bucuresti Blvd., Prahova 100680, Romania)

  • Gheorghe H. Popescu

    (Dimitrie Cantemir Christian University, 176 Splaiul Unirii, Bucharest 030134, Romania)

  • Elvira Nica

    (Bucharest University of Economic Study, 6 Roman Place, Bucharest 010374, Romania)

  • Mirela Panait

    (Petroleum & Gas University of Ploiesti, 39 Bucuresti Blvd., Prahova 100680, Romania)

Abstract

This paper presents a heuristic methodology for estimating the possible variation of the liquid biofuel potential of a region, an appraisal made for a future period of time. The determination of the liquid biofuel potential has been made up either on the account of an average (constant) yield of the energetic crops that were used, or on the account of a yield that varies depending on a known trend, which can be estimated through a certain method. The proposed methodology uses the variation of the yield of energetic crops over time in order to simulate a variation of the biofuel potential for a future ten year time period. This new approach to the problem of determining the liquid biofuel potential of a certain land area can be useful for investors, as it allows making a more realistic analysis of the investment risk and of the possibilities of recovering the investment. On the other hand, the presented methodology can be useful to the governmental administration in order to elaborate strategies and policies to ensure the necessity of fuels and liquid biofuels for transportation, in a certain area. Unlike current methods, which approach the problem of determining the liquid biofuel potential in a deterministic way, by using econometric methods, the proposed methodology uses heuristic reasoning schemes in order to reduce the great number of factors that actually influence the biofuel potential and which usually have unknown values.

Suggested Citation

  • Dorel Dusmanescu & Jean Andrei & Gheorghe H. Popescu & Elvira Nica & Mirela Panait, 2016. "Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region," Energies, MDPI, vol. 9(9), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:703-:d:77112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Habib-Mintz, Nazia, 2010. "Biofuel investment in Tanzania: Omissions in implementation," Energy Policy, Elsevier, vol. 38(8), pages 3985-3997, August.
    2. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    3. Linares, Pedro & Pérez-Arriaga, Ignacio J., 2013. "A sustainable framework for biofuels in Europe," Energy Policy, Elsevier, vol. 52(C), pages 166-169.
    4. Andreea Ileana Zamfir, 2011. "Management Of Renewable Energy And Regional Development: European Experiences And Steps Forward," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(3), pages 35-42, August.
    5. Afrane, George, 2012. "Examining the potential for liquid biofuels production and usage in Ghana," Energy Policy, Elsevier, vol. 40(C), pages 444-451.
    6. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Yusaf, T., 2009. "Potential of bioethanol production from agricultural wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1418-1427, August.
    7. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2016. "Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 281-297.
    8. Panoutsou, Calliope & Eleftheriadis, John & Nikolaou, Anastasia, 2009. "Biomass supply in EU27 from 2010 to 2030," Energy Policy, Elsevier, vol. 37(12), pages 5675-5686, December.
    9. Cremonez, Paulo André & Feroldi, Michael & Feiden, Armin & Gustavo Teleken, Joel & José Gris, Diego & Dieter, Jonathan & de Rossi, Eduardo & Antonelli, Jhonatas, 2015. "Current scenario and prospects of use of liquid biofuels in South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 352-362.
    10. Pearman, Graeme I., 2013. "Limits to the potential of bio-fuels and bio-sequestration of carbon," Energy Policy, Elsevier, vol. 59(C), pages 523-535.
    11. Nguyen, Nhan T. & Ha-Duong, Minh, 2009. "Economic potential of renewable energy in Vietnam's power sector," Energy Policy, Elsevier, vol. 37(5), pages 1601-1613, May.
    12. Horta Nogueira, Luiz Augusto & Moreira, Jose Roberto & Schuchardt, Ulf & Goldemberg, Jose, 2013. "The rationality of biofuels," Energy Policy, Elsevier, vol. 61(C), pages 595-598.
    13. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    14. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    15. McCarty, Tanner & Sesmero, Juan, 2014. "Uncertainty, Irreversibility, and Investment in Second-Generation Biofuels," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 179201, Agricultural and Applied Economics Association.
    16. Andreea ZAMFIR, 2012. "Implementing Regional Renewable Energy Projects Through Public-Private Partnerships," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 2(3), pages 77-84, September.
    17. Fujino, Junichi & Yamaji, Kenji & Yamamoto, Hiromi, 1999. "Biomass-Balance Table for evaluating bioenergy resources," Applied Energy, Elsevier, vol. 63(2), pages 75-89, June.
    18. Andreea Zamfir, 2012. "Development Of Regional Renewable Energy Projects In Romania Through Public-Private Partnerships," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 6(1), pages 778-784, November.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    20. Robert M. de Jong & Neslihan Sakarya, 2016. "The Econometrics of the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 310-317, May.
    21. Alonso-Pippo, Walfrido & Luengo, Carlos A. & Alonsoamador Morales Alberteris, Lidice & García del Pino, Gilberto & Duvoisin, Sergio, 2013. "Practical implementation of liquid biofuels: The transferability of the Brazilian experiences," Energy Policy, Elsevier, vol. 60(C), pages 70-80.
    22. Voivontas, D. & Assimacopoulos, D. & Mourelatos, A. & Corominas, J., 1998. "Evaluation of Renewable Energy potential using a GIS decision support system," Renewable Energy, Elsevier, vol. 13(3), pages 333-344.
    23. Walther, Grit & Schatka, Anne & Spengler, Thomas S., 2012. "Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany," European Journal of Operational Research, Elsevier, vol. 218(1), pages 280-292.
    24. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    25. Cicea, Claudiu & Marinescu, Corina & Popa, Ion & Dobrin, Cosmin, 2014. "Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 555-564.
    26. Yamamoto, H. & Yamaji, K. & Fujino, J., 1999. "Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique," Applied Energy, Elsevier, vol. 63(2), pages 101-113, June.
    27. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Neacsa & Jianu Daniel Muresan & Marian Catalin Voica & Otilia Manta & Mihail Vincentiu Ivan, 2023. "Oil Price—A Sensor for the Performance of Romanian Oil Manufacturing Companies," Energies, MDPI, vol. 16(5), pages 1-18, February.
    2. Turek Rahoveanu, Adrian & Turek Rahoveanu, Maria Magdalena & Ion, Raluca Andreea, 2018. "Energy crops, the edible oil processing industry and land use paradigms in Romania–An economic analysis," Land Use Policy, Elsevier, vol. 71(C), pages 261-270.
    3. Yueying Wang & Ying Tian, 2023. "The Impact of New Energy Vehicle Product Attributes on Consumer Purchase Intention in the Backdrop of Sustainable Development Goals," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    4. Jean Vasile Andrei & Mihai Mieila & Mirela Panait, 2017. "The impact and determinants of the energy paradigm on economic growth in European Union," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-17, March.
    5. Marian Zaharia & Aurelia Pătrașcu & Manuela Rodica Gogonea & Ana Tănăsescu & Constanța Popescu, 2017. "A Cluster Design on the Influence of Energy Taxation in Shaping the New EU-28 Economic Paradigm," Energies, MDPI, vol. 10(2), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    3. Horatiu Sorin REGNEALA, 2015. "Solar Energy Field Welcomes New Trends In The European Union. Case Study: Romania," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 5(2), pages 84-93, June.
    4. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    5. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    6. Patricia Aranda-Cuéllar & José María López-Morales & María Jesús Such-Devesa, 2021. "Winter tourism dependence: A cyclical and cointegration analysis. Case study for the Alps," Tourism Economics, , vol. 27(7), pages 1540-1560, November.
    7. Andreea ZAMFIR, 2014. "Developing URBAN RENEWABLE ENERGY PROJECTS: OPPORTUNITIES AND CHALLENGES FOR ROMANIA," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 9(4), pages 52-64, November.
    8. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    9. Oleg MARGINA & Cristina Maria PARTAL, 2013. "Iron And Steel Industry’S Perspective For Wind Power 20," Proceedings of Administration and Public Management International Conference, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 9(1), pages 289-297, June.
    10. Ye Lu & Adrian Pagan, 2023. "To Boost or Not to Boost? That is the Question," CAMA Working Papers 2023-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    12. Destefanis, Sergio & Fragetta, Matteo & Gasteiger, Emanuel, 2021. "Does one size fit all in the Euro Area? Some counterfactual evidence," ECON WPS - Working Papers in Economic Theory and Policy 05/2019, TU Wien, Institute of Statistics and Mathematical Methods in Economics, Economics Research Unit, revised 2021.
    13. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    14. Hiroshi Yamada, 2023. "Quantile regression version of Hodrick–Prescott filter," Empirical Economics, Springer, vol. 64(4), pages 1631-1645, April.
    15. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    16. Taghizadeh-Alisaraei, Ahmad & Hosseini, Seyyed Hasan & Ghobadian, Barat & Motevali, Ali, 2017. "Biofuel production from citrus wastes: A feasibility study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1100-1112.
    17. Ravanipour, Masoumeh & Hamidi, Ali & Mahvi, Amir Hossein, 2021. "Microalgae biodiesel: A systematic review in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Trutnevyte, Evelina, 2013. "EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective," Applied Energy, Elsevier, vol. 111(C), pages 593-601.
    19. Garegnani, Giulia & Sacchelli, Sandro & Balest, Jessica & Zambelli, Pietro, 2018. "GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys," Applied Energy, Elsevier, vol. 216(C), pages 709-723.
    20. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:703-:d:77112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.