IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2023-12.html
   My bibliography  Save this paper

To Boost or Not to Boost? That is the Question

Author

Listed:
  • Ye Lu
  • Adrian Pagan

Abstract

Phillips and Shi (2021) have argued that there may be some leakage from the estimate of the permanent component to what is meant to be the transitory component when one uses the Hodrick-Prescott filter. They argue that this can be eliminated by boosting the filter. We show that there is no leakage from the filter per se, so boosting is not needed for that. They also argue that there are DGP’s for the components for which the boosted filter tracks these more accurately. We show that there are other plausible DGP’s where the boosted filter tracks less accurately, and what is crucial to tracking performance is how important permanent shocks are to growth in the series being filtered. In particular, the DGP’s used in Phillips and Shi (2021) have a very high contribution from permanent shocks.

Suggested Citation

  • Ye Lu & Adrian Pagan, 2023. "To Boost or Not to Boost? That is the Question," CAMA Working Papers 2023-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2023-12
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2023-02/12_2023_lu_pagan_0.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin Fukač & Adrian Pagan, 2010. "Limited information estimation and evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 55-70, January.
    2. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    3. Pagan, Adrian & Robinson, Tim, 2022. "Excess shocks can limit the economic interpretation," European Economic Review, Elsevier, vol. 145(C).
    4. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    5. Sakarya, Neslihan & de Jong, Robert M., 2020. "A Property Of The Hodrick–Prescott Filter And Its Application," Econometric Theory, Cambridge University Press, vol. 36(5), pages 840-870, October.
    6. George-Marios Angeletos & Fabrice Collard & Harris Dellas, 2020. "Business-Cycle Anatomy," American Economic Review, American Economic Association, vol. 110(10), pages 3030-3070, October.
    7. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    8. Don Harding & Adrian Pagan, 2016. "The Econometric Analysis of Recurrent Events in Macroeconomics and Finance," Economics Books, Princeton University Press, edition 1, number 10744.
    9. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    10. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    11. Ulrich K. Müller & Mark W. Watson, 2008. "Testing Models of Low-Frequency Variability," Econometrica, Econometric Society, vol. 76(5), pages 979-1016, September.
    12. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    13. Max Gillman & Adrian Pagan, 2023. "Investigating Cycle Anatomy," CAMA Working Papers 2023-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2022. "The boosted HP filter is more general than you might think," Papers 2209.09810, arXiv.org.
    15. Daniel Buncic & Adrian Pagan, 2022. "Discovering Stars: Problems in Recovering Latent Variables from Models," CAMA Working Papers 2022-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Robert M. de Jong & Neslihan Sakarya, 2016. "The Econometrics of the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 310-317, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroshi Yamada, 2023. "Quantile regression version of Hodrick–Prescott filter," Empirical Economics, Springer, vol. 64(4), pages 1631-1645, April.
    2. Neslihan Sakarya & Robert M. de Jong, 2022. "The spectral analysis of the Hodrick–Prescott filter," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 479-489, May.
    3. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    5. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    6. Hiroshi Yamada & Ruoyi Bao, 2022. "$$\ell _{1}$$ ℓ 1 Common Trend Filtering," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1005-1025, March.
    7. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    8. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    9. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    10. Patricia Aranda-Cuéllar & José María López-Morales & María Jesús Such-Devesa, 2021. "Winter tourism dependence: A cyclical and cointegration analysis. Case study for the Alps," Tourism Economics, , vol. 27(7), pages 1540-1560, November.
    11. Kady Keita & Camelia Turcu, 2023. "Promoting Counter-Cyclical Fiscal Policy: Fiscal Rules Versus Institutions," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 65(4), pages 736-781, December.
    12. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    13. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    14. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    15. Nadav Ben Zeev, 2019. "Asymmetric Business Cycles In Emerging Market Economies," Working Papers 1909, Ben-Gurion University of the Negev, Department of Economics.
    16. Jylhä, Petri & Lof, Matthijs, 2022. "Mind the Basel gap," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    17. Joseph G. Haubrich, 2020. "How Cyclical Is Bank Capital?," Journal of Financial Services Research, Springer;Western Finance Association, vol. 58(1), pages 27-38, August.
    18. Pagan, Adrian & Robinson, Tim, 2022. "Excess shocks can limit the economic interpretation," European Economic Review, Elsevier, vol. 145(C).
    19. Viv B Hall & Peter Thomson, 2020. "Does Hamilton’s OLS regression provide a “better alternative†to the Hodrick-Prescott filter? A New Zealand business cycle perspective," CAMA Working Papers 2020-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.

    More about this item

    Keywords

    Boosting; Hodrick-Prescott filter; Component models;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2023-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.