IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1095-d215944.html
   My bibliography  Save this article

Biomass Potential from Agricultural Waste for Energetic Utilization in Greece

Author

Listed:
  • Spyridon Alatzas

    (Unit of Environmental Science & Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece)

  • Konstantinos Moustakas

    (Unit of Environmental Science & Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece)

  • Dimitrios Malamis

    (Unit of Environmental Science & Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece)

  • Stergios Vakalis

    (Unit of Environmental Science & Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
    Technical Physics Group, Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

Abstract

The alignment of the Greek national legislation with the corresponding EU legislation has enhanced the national efforts to pursue renewable Combined Heat and Power (CHP) projects. The scope of the present study has been the identification of the available biomass resources and the assessment of their potential. In this paper, we present the results from the administrative regions of Crete, Thessaly, and Peloponnese. The levels of lignocellulosic biomass in Greece are estimated to be 2,132,286 tonnes on an annual basis, values that are very close to the cases of other Mediterranean countries like Italy and Portugal. In respect to the total agricultural residues, Crete produces 1,959,124 tonnes/year and Thessaly produces 1,759,457 tonnes/year. The most significant streams are identified to be olive pits, olive pruning, and cotton ginning remnants, with more than 100,000 tonnes/year each. In the latter part of this manuscript, a case study is presented for the development of a CHP gasification facility in Messenia. The biomass energy potential of the area is very promising, with about 3,800,000 GJ/year. The proposed small-scale gasification technology is expected to utilize 7956 tonnes of biomass per year and to produce 6630 MWh of electricity and 8580 MWh of thermal energy.

Suggested Citation

  • Spyridon Alatzas & Konstantinos Moustakas & Dimitrios Malamis & Stergios Vakalis, 2019. "Biomass Potential from Agricultural Waste for Energetic Utilization in Greece," Energies, MDPI, vol. 12(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1095-:d:215944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    2. Girard, A. & Gago, E.J. & Ordoñez, J. & Muneer, T., 2016. "Spain's energy outlook: A review of PV potential and energy export," Renewable Energy, Elsevier, vol. 86(C), pages 703-715.
    3. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    4. Toklu, E., 2017. "Biomass energy potential and utilization in Turkey," Renewable Energy, Elsevier, vol. 107(C), pages 235-244.
    5. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Siniša Škrbić & Aleksandar Ašonja & Radivoj Prodanović & Vladica Ristić & Goran Stevanović & Miroslav Vulić & Zoran Janković & Adriana Radosavac & Saša Igić, 2020. "Analysis of Plant-Production-Obtained Biomass in Function of Sustainable Energy," Sustainability, MDPI, vol. 12(13), pages 1-14, July.
    4. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Emmanouil Karampinis & Michael Alexandros Kougioumtzis & Panagiotis Grammelis & Luigi Pari, 2020. "Machine Performance and Hog Fuel Quality Evaluation in Olive Tree Pruning Harvesting Conducted Using a Towed Shredder on Flat and Hilly Fields," Energies, MDPI, vol. 13(7), pages 1-16, April.
    5. Paris, Bas & Papadakis, George & Janssen, Rainer & Rutz, Dominik, 2021. "Economic analysis of advanced biofuels, renewable gases, electrofuels and recycled carbon fuels for the Greek transport sector until 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    7. John Vourdoubas, 2022. "Climate Change Impacts on Energy Generation from Renewable Energies in the Island of Crete, Greece," Environmental Management and Sustainable Development, Macrothink Institute, vol. 11(3), pages 1-12, December.
    8. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.
    9. Mindaugas Kulokas & Marius Praspaliauskas & Nerijus Pedišius, 2021. "Investigation of Buckwheat Hulls as Additives in the Production of Solid Biomass Fuel from Straw," Energies, MDPI, vol. 14(2), pages 1-10, January.
    10. Moustakas, K. & Parmaxidou, P. & Vakalis, S., 2020. "Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly," Energy, Elsevier, vol. 191(C).
    11. Quetzalcoatl Hernandez-Escobedo & David Muñoz-Rodríguez & Alejandro Vargas-Casillas & José Manuel Juárez Lopez & Pilar Aparicio-Martínez & María Pilar Martínez-Jiménez & Alberto-Jesus Perea-Moreno, 2022. "Renewable Energies in the Agricultural Sector: A Perspective Analysis of the Last Three Years," Energies, MDPI, vol. 16(1), pages 1-17, December.
    12. Jesús Marquina & María José Colinet & María del P. Pablo-Romero, 2021. "Measures to Promote Olive Grove Biomass in Spain and Andalusia: An Opportunity for Economic Recovery against COVID-19," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
    13. Lim, B.A. & Lim, S. & Pang, Y.L. & Shuit, S.H. & Kuan, S.H., 2023. "Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nandimandalam, Hariteja & Gude, Veera Gnaneswar, 2022. "Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: A techno-economic analysis," Renewable Energy, Elsevier, vol. 200(C), pages 1105-1119.
    2. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Konstantinos Ioannou & Georgios Tsantopoulos & Garyfallos Arabatzis & Zacharoula Andreopoulou & Eleni Zafeiriou, 2018. "A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece," Sustainability, MDPI, vol. 10(2), pages 1-22, February.
    4. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    5. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Daniel Wuebben & Jens F. Peters, 2022. "Communicating the Values and Benefits of Home Solar Prosumerism," Energies, MDPI, vol. 15(2), pages 1-19, January.
    7. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    8. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    9. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    10. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    11. Alessandro Suardi & Walter Stefanoni & Vincenzo Alfano & Simone Bergonzoli & Luigi Pari, 2020. "Equipping a Combine Harvester with Turbine Technology Increases the Recovery of Residual Biomass from Cereal Crops via the Collection of Chaff," Energies, MDPI, vol. 13(7), pages 1-14, March.
    12. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    13. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    14. Antonio Alberto Rodríguez Sousa & Claudia Tribaldos-Anda & Sergio A. Prats & Clarisse Brígido & José Muñoz-Rojas & Alejandro J. Rescia, 2022. "Impacts of Fertilization on Environmental Quality across a Gradient of Olive Grove Management Systems in Alentejo (Portugal)," Land, MDPI, vol. 11(12), pages 1-19, December.
    15. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    17. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    18. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    19. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1095-:d:215944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.