IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6565-d289308.html
   My bibliography  Save this article

Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)

Author

Listed:
  • Leonardo Rivera-Cadavid

    (School of Industrial Engineering, Universidad del Valle, Cali 13 No 100-00, Colombia)

  • Pablo Cesar Manyoma-Velásquez

    (School of Industrial Engineering, Universidad del Valle, Cali 13 No 100-00, Colombia)

  • Diego F. Manotas-Duque

    (School of Industrial Engineering, Universidad del Valle, Cali 13 No 100-00, Colombia)

Abstract

Access to clean and non-polluting energy has been defined as a Sustainable Development Goal (SDG). In this context, countries such as Colombia have promoted policies and incentives for the implementation of energy projects with non-conventional sources of energy. One of the main energy alternatives available is related to the use of residual biomass left by agribusiness supply chains, such as sugarcane. In Colombia, sugar cane is grown and harvested all year round, due to the local tropical climate. The model we propose addresses the question of the selection of the plots whose crop residue will be transported for energy production on a given day. We built a Mixed-Integer Programming model to decide which plots to harvest on a given day. Although no additional energy is generated in the model, the results show that it is feasible to replace all coal used in the boilers with sugarcane crop residues (SCRs) for power cogeneration.

Suggested Citation

  • Leonardo Rivera-Cadavid & Pablo Cesar Manyoma-Velásquez & Diego F. Manotas-Duque, 2019. "Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6565-:d:289308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A J Higgins & L A Laredo, 2006. "Improving harvesting and transport planning within a sugar value chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 367-376, April.
    2. Ulises Flores Hernández & Dirk Jaeger & Jorge Islas Samperio, 2017. "Bioenergy Potential and Utilization Costs for the Supply of Forest Woody Biomass for Energetic Use at a Regional Scale in Mexico," Energies, MDPI, vol. 10(8), pages 1-25, August.
    3. Sindhu, Raveendran & Gnansounou, Edgard & Binod, Parameswaran & Pandey, Ashok, 2016. "Bioconversion of sugarcane crop residue for value added products – An overview," Renewable Energy, Elsevier, vol. 98(C), pages 203-215.
    4. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    5. Smithers, Jeff, 2014. "Review of sugarcane trash recovery systems for energy cogeneration in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 915-925.
    6. Nasim Zandi Atashbar & Nacima Labadie & Christian Prins, 2018. "Modelling and optimisation of biomass supply chains: a review," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3482-3506, May.
    7. Go, Alchris Woo & Conag, Angelique T., 2019. "Utilizing sugarcane leaves/straws as source of bioenergy in the Philippines: A case in the Visayas Region," Renewable Energy, Elsevier, vol. 132(C), pages 1230-1237.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    10. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    11. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    12. Bocci, E. & Di Carlo, A. & Marcelo, D., 2009. "Power plant perspectives for sugarcane mills," Energy, Elsevier, vol. 34(5), pages 689-698.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    2. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    3. Saghaei, Mahsa & Ghaderi, Hadi & Soleimani, Hamed, 2020. "Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand," Energy, Elsevier, vol. 197(C).
    4. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    5. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    6. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    7. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    8. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    9. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    10. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Jayarathna, Lasinidu & Kent, Geoff & O'Hara, Ian & Hobson, Philip, 2020. "A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types," Applied Energy, Elsevier, vol. 275(C).
    12. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    14. Xuezhen Guo & Juliën Voogt & Bert Annevelink & Joost Snels & Argyris Kanellopoulos, 2020. "Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers," Energies, MDPI, vol. 13(22), pages 1-16, November.
    15. Sarker, Bhaba R. & Wu, Bingqing & Paudel, Krishna P., 2019. "Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location," Applied Energy, Elsevier, vol. 239(C), pages 343-355.
    16. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    17. Harahap, Fumi & Leduc, Sylvain & Mesfun, Sennai & Khatiwada, Dilip & Kraxner, Florian & Silveira, Semida, 2020. "Meeting the bioenergy targets from palm oil based biorefineries: An optimal configuration in Indonesia," Applied Energy, Elsevier, vol. 278(C).
    18. Pin, Lantos A. & Pennink, Bartjan J.W. & Balsters, Herman & Sianipar, Corinthias P.M., 2021. "Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia," Technology in Society, Elsevier, vol. 66(C).
    19. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    20. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6565-:d:289308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.