IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6616-d911506.html
   My bibliography  Save this article

Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling

Author

Listed:
  • Nithin Isaac

    (School of Engineering, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa)

  • Akshay Kumar Saha

    (School of Engineering, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa)

Abstract

This paper presents a model to predict the number of refuelling trips by vehicles on any given day considering weather conditions and time of the year. The predicted refuelling trips were founded on count-based data, i.e., data that contain events that occur at a certain rate. The paper presents an algorithm developed using Python programming language and the statsmodels module to achieve this. The results indicate that the GP-1 model developed in this paper is statistically significant at the 95% confidence level as it was able to converge—however, precipitation and high ambient temperature conditions are considered statistically insignificant in this model. The viability of the model was further tested on the remaining 20% of the data. Sensitivity tests indicate that there is a good correlation between the actual trips and predicted trips when 70% of the data are used to train the model. Overall, the model presented can be used to predict the number of trips taken by vehicles to refuel as well as model future trends, accurately. This model, can in the future, be applied to predict the refuelling behaviour of alternative fuel vehicles such as hydrogen fuel vehicles, when such data become available.

Suggested Citation

  • Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6616-:d:911506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melaina, Marc & Bremson, Joel, 2008. "Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage," Energy Policy, Elsevier, vol. 36(8), pages 3223-3231, August.
    2. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    3. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    4. Scott Kelley, 2018. "Driver Use and Perceptions of Refueling Stations Near Freeways in a Developing Infrastructure for Alternative Fuel Vehicles," Social Sciences, MDPI, vol. 7(11), pages 1-18, November.
    5. Tran, Martino & Banister, David & Bishop, Justin D.K. & McCulloch, Malcolm D., 2013. "Simulating early adoption of alternative fuel vehicles for sustainability," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 865-875.
    6. Brozynski, Max T. & Leibowicz, Benjamin D., 2020. "Markov models of policy support for technology transitions," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1052-1069.
    7. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    9. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    10. Alazemi, Jasem & Andrews, John, 2015. "Automotive hydrogen fuelling stations: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 483-499.
    11. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
    13. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
    14. Melaina, Marc W & Bremson, Joel, 2008. "Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage," Institute of Transportation Studies, Working Paper Series qt8ng1g4rf, Institute of Transportation Studies, UC Davis.
    15. Grüger, Fabian & Dylewski, Lucy & Robinius, Martin & Stolten, Detlef, 2018. "Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior," Applied Energy, Elsevier, vol. 228(C), pages 1540-1549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithin Isaac & Akshay K. Saha, 2023. "A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations," Energies, MDPI, vol. 16(5), pages 1-16, February.
    2. Nithin Isaac & Akshay Kumar Saha, 2023. "Analysis of Refueling Behavior Models for Hydrogen-Fuel Vehicles: Markov versus Generalized Poisson Modeling," Sustainability, MDPI, vol. 15(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    3. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    4. Collantes, Gustavo & Melaina, Marc W., 2011. "The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas," Energy Policy, Elsevier, vol. 39(2), pages 664-675, February.
    5. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    6. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.
    7. Nithin Isaac & Akshay Kumar Saha, 2023. "Analysis of Refueling Behavior Models for Hydrogen-Fuel Vehicles: Markov versus Generalized Poisson Modeling," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    8. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
    9. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    10. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    11. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    12. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    13. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    14. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    15. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    16. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2017. "A stakeholder analysis of the automotive industry's use of compressed natural gas in Nigeria," Transport Policy, Elsevier, vol. 53(C), pages 58-69.
    17. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    18. Ackah, Ishmael & TETTEH, ELIZABETH NARKIE, 2016. "Determinants of autogas demand among Taxi Drivers in rural Ghana," MPRA Paper 74242, University Library of Munich, Germany.
    19. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6616-:d:911506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.