IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13474-d1235806.html
   My bibliography  Save this article

Analysis of Refueling Behavior Models for Hydrogen-Fuel Vehicles: Markov versus Generalized Poisson Modeling

Author

Listed:
  • Nithin Isaac

    (Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa)

  • Akshay Kumar Saha

    (Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa)

Abstract

This paper presents an analysis of two methodologies that can be used to predict refueling behavior. Both models aim to provide insights into hydrogen-fuel vehicle users’ refueling patterns and behaviors. The first model leverages probabilistic transitions between refueling states to simulate and predict the refueling behavior of hydrogen vehicle users. In contrast, the GP-1 model employs Gaussian processes to capture the underlying patterns and uncertainties in hydrogen-fuel vehicle refueling behavior, taking into consideration additional factors such as weather conditions and the time of the year. The model demonstrates statistical significance and accuracy in predicting trips while identifying the insignificance of precipitation and high ambient temperatures. The methodologies, findings, strengths, and limitations of the two models were tested and compared to identify their relevant contributions. By contrasting their methodologies and evaluating their predictive performance, using performance metrics such as accuracy, precision, and recall values, this study provides valuable insights into the strengths and limitations of each approach. Limitations include assuming a stationary refueling process and excluding external factors and limitations related to data availability, as well as the absence of a specific focus on hydrogen-fuel vehicles. By understanding the differences and similarities between these two models, this paper aims to provide a unique perspective on gaps and further requirements for accurate prediction and modeling of refueling behavior to guide policymakers, infrastructure planners, and stakeholders in making informed decisions regarding the design and optimization of hydrogen refueling infrastructure.

Suggested Citation

  • Nithin Isaac & Akshay Kumar Saha, 2023. "Analysis of Refueling Behavior Models for Hydrogen-Fuel Vehicles: Markov versus Generalized Poisson Modeling," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13474-:d:1235806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gnann, Till & Plötz, Patrick, 2015. "A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 783-793.
    2. Melaina, Marc & Bremson, Joel, 2008. "Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage," Energy Policy, Elsevier, vol. 36(8), pages 3223-3231, August.
    3. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    4. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Li, Mengyu & Zhang, Xiongwen & Li, Guojun, 2016. "A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis," Energy, Elsevier, vol. 94(C), pages 693-704.
    6. Nithin Isaac & Akshay K. Saha, 2023. "A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations," Energies, MDPI, vol. 16(5), pages 1-16, February.
    7. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
    8. repec:cdl:itsdav:qt8ng1g4rf is not listed on IDEAS
    9. Ajanovic, A. & Glatt, A. & Haas, R., 2021. "Prospects and impediments for hydrogen fuel cell buses," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithin Isaac & Akshay K. Saha, 2024. "Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model," Sustainability, MDPI, vol. 16(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nithin Isaac & Akshay Kumar Saha, 2022. "Predicting Vehicle Refuelling Trips through Generalised Poisson Modelling," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
    3. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    4. Nithin Isaac & Akshay K. Saha, 2023. "A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations," Energies, MDPI, vol. 16(5), pages 1-16, February.
    5. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    6. Soyeong Park & Solji Nam & Myoungjin Oh & Ie-jung Choi & Jungwoo Shin, 2020. "Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition," Energies, MDPI, vol. 13(15), pages 1-13, August.
    7. Knüpfer, Kristina & Mäll, Martin & Esteban, Miguel & Shibayama, Tomoya, 2021. "Review of mixed-technology vehicle fleet evolution and representation in modelling studies: Policy contexts of Germany and Japan," Energy Policy, Elsevier, vol. 156(C).
    8. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    9. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    10. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    12. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    13. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    14. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    15. Gu, Bo & Li, Fangxing & Mao, Chengxiong & Wang, Dan & Fan, Hua & Liu, Bin & Li, Wenhao, 2025. "A Bilevel robust coordination model for community integrated energy system with access to HFCEVs and EVs," Applied Energy, Elsevier, vol. 390(C).
    16. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    17. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    18. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    19. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    20. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13474-:d:1235806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.