IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4154-d832056.html
   My bibliography  Save this article

Modeling and Analysis of the Flow Characteristics of Liquid Hydrogen in a Pipe Suffering from External Transient Impact

Author

Listed:
  • Yuanliang Liu

    (State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China
    Department of Building Environment and Energy Application Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Yinan Qiu

    (State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China)

  • Zhan Liu

    (Department of Building Environment and Energy Application Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Gang Lei

    (State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China)

Abstract

Pipes can be subjected to external transient impacts such as accidental collision, which affects the safe operation of storage and transportation systems for liquid hydrogen. Fluid–structure coupling calculation for a pipe under external transient impact is performed, and the flow characteristics of liquid hydrogen in the pipe are analyzed. The pipe deforms and vibrates when suffering from external transient impact. Liquid hydrogen pressure in a cross-section plane increases along the pipe deformation direction. Additionally, external transient impact enhances the disturbance of liquid hydrogen near the pipe wall. The increased flow resistance and the energy induced by the deformed pipe both affect the flow of liquid hydrogen, and contribute to the fluctuated characteristics of liquid pressure drop. In addition, the phase state of liquid hydrogen remains unchanged in the pipe, indicating that little of the induced energy is transformed into the internal energy of liquid hydrogen. The work provides theoretical guidance for the safe operation of liquid hydrogen storage and transportation systems.

Suggested Citation

  • Yuanliang Liu & Yinan Qiu & Zhan Liu & Gang Lei, 2022. "Modeling and Analysis of the Flow Characteristics of Liquid Hydrogen in a Pipe Suffering from External Transient Impact," Energies, MDPI, vol. 15(11), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4154-:d:832056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Deng, B.C. & Yang, S.Q. & Xie, X.J. & Wang, Y.L. & Pan, W. & Li, Q. & Gong, L.H., 2019. "Thermal performance assessment of cryogenic transfer line with support and multilayer insulation for cryogenic fluid," Applied Energy, Elsevier, vol. 250(C), pages 895-903.
    3. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.
    4. Christopher Winnefeld & Thomas Kadyk & Boris Bensmann & Ulrike Krewer & Richard Hanke-Rauschenbach, 2018. "Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications," Energies, MDPI, vol. 11(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey Dengaev & Vladimir Verbitsky & Olga Eremenko & Anna Novikova & Andrey Getalov & Boris Sargin, 2022. "Water-in-Oil Emulsions Separation Using a Controlled Multi-Frequency Acoustic Field at an Operating Facility," Energies, MDPI, vol. 15(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    2. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    3. Juhui Gim & Minsu Kim & Changsun Ahn, 2022. "Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-15, March.
    4. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    5. Jorgen Depken & Alexander Dyck & Lukas Roß & Sören Ehlers, 2022. "Safety Considerations of Hydrogen Application in Shipping in Comparison to LNG," Energies, MDPI, vol. 15(9), pages 1-20, April.
    6. Pavlos Rompokos & Sajal Kissoon & Ioannis Roumeliotis & Devaiah Nalianda & Theoklis Nikolaidis & Andrew Rolt, 2020. "Liquefied Natural Gas for Civil Aviation," Energies, MDPI, vol. 13(22), pages 1-20, November.
    7. Eleonora Riva Sanseverino & Le Quyen Luu, 2022. "Critical Raw Materials and Supply Chain Disruption in the Energy Transition," Energies, MDPI, vol. 15(16), pages 1-5, August.
    8. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    9. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    10. Yang, Ruiyue & Hong, Chunyang & Liu, Wei & Wu, Xiaoguang & Wang, Tianyu & Huang, Zhongwei, 2021. "Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 165(P1), pages 125-138.
    11. Gu, Jiwon & Choe, Changgwon & Haider, Junaid & Al-Abri, Rashid & Qyyum, Muhammad Abdul & Al-Muhtaseb, Ala'a H. & Lim, Hankwon, 2023. "Development and modification of large-scale hydrogen liquefaction process empowered by LNG cold energy: A feasibility study," Applied Energy, Elsevier, vol. 351(C).
    12. Gi-Dong Nam & Hae-Jin Sung & Dong-Woo Ha & Hyun-Woo No & Tea-Hyung Koo & Rock-Kil Ko & Minwon Park, 2023. "Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen," Energies, MDPI, vol. 16(1), pages 1-21, January.
    13. Fan, Yading & Chen, Tairan & Liang, Wendong & Wang, Guoyu & Huang, Biao, 2022. "Numerical and theoretical investigations of the cavitation performance and instability for the cryogenic inducer," Renewable Energy, Elsevier, vol. 184(C), pages 291-305.
    14. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    15. Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.
    16. Jonas Mangold & Daniel Silberhorn & Nicolas Moebs & Niclas Dzikus & Julian Hoelzen & Thomas Zill & Andreas Strohmayer, 2022. "Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication," Energies, MDPI, vol. 15(7), pages 1-41, March.
    17. Thomas Kadyk & Christopher Winnefeld & Richard Hanke-Rauschenbach & Ulrike Krewer, 2018. "Analysis and Design of Fuel Cell Systems for Aviation," Energies, MDPI, vol. 11(2), pages 1-15, February.
    18. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    19. Andriy Chaban & Zbigniew Lukasik & Marek Lis & Andrzej Szafraniec, 2020. "Mathematical Modeling of Transient Processes in Magnetic Suspension of Maglev Trains," Energies, MDPI, vol. 13(24), pages 1-17, December.
    20. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4154-:d:832056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.