IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p176-d712604.html
   My bibliography  Save this article

Inter-Provincial Power Transmission and Its Embodied Carbon Flow in China: Uneven Green Energy Transition Road to East and West

Author

Listed:
  • Li Ma

    (Institute of Geographic Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100042, China)

Abstract

Inter-provincial power transmission in China solved the problem of electricity production and consumption spatial mismatch, which also facilitated Chinese green energy transition and sustainable development. Aiming to understand the spatial patterns and main driving factors, this paper accounted the aggregate carbon intensity per electricity produced by each province, built the inter-provincial Out–Destination matrixes of carbon emission embodied in power transmission among 27 provincial areas of 2006 and 2019, and quantitatively analyzed the change in spatial patterns of carbon flow and carbon intensity difference between power inward and outward provinces. We found that the inter-provincial power transmission has led to the reduction in the national average carbon intensity per electricity produced from 0.855 kg/kWh in 2006 to 0.628 kg/kWh in 2019 and the green energy transition of all provinces. The spatial morphology characteristics of carbon flow show the ‘three corridors of West-East Power Transmission (WEPT)’ pattern, in which power is transmitted from some main thermal power-dominated provinces in central and north-west China to the eastern coastal provinces. Further, it resulted in the carbon leakage from electricity consumption of the coastal provinces and carbon overload of the hinterland provinces. Despite natural resource endowment, the location of the provinces in the national power grid, the national low-carbon energy transition strategy, as well as advances in long-distance ultra-high-voltage power transmission technologies were the main factors to the formation and evolution of Chinese electricity green transition.

Suggested Citation

  • Li Ma, 2021. "Inter-Provincial Power Transmission and Its Embodied Carbon Flow in China: Uneven Green Energy Transition Road to East and West," Energies, MDPI, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:176-:d:712604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wenying & Li, Hualin & Wu, Zongxin, 2010. "Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model," Energy Policy, Elsevier, vol. 38(11), pages 7106-7120, November.
    2. Zhu, Fahua & Zheng, Youfei & Guo, Xulin & Wang, Sheng, 2005. "Environmental impacts and benefits of regional power grid interconnections for China," Energy Policy, Elsevier, vol. 33(14), pages 1797-1805, September.
    3. Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
    4. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Gnansounou, Edgard & Dong, Jun, 2004. "Opportunity for inter-regional integration of electricity markets: the case of Shandong and Shanghai in East China," Energy Policy, Elsevier, vol. 32(15), pages 1737-1751, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    2. Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
    3. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    4. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    5. Toshiyuki Sueyoshi & Ruchuan Zhang & Aijun Li, 2023. "Measuring and Analyzing Operational Efficiency and Returns to Scale in a Time Horizon: Assessment of China’s Electricity Generation & Transmission at Provincial Levels," Energies, MDPI, vol. 16(2), pages 1-23, January.
    6. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    7. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    8. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    9. Ochoa, Camila & Dyner, Isaac & Franco, Carlos J., 2013. "Simulating power integration in Latin America to assess challenges, opportunities, and threats," Energy Policy, Elsevier, vol. 61(C), pages 267-273.
    10. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    11. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    12. Li, Yanfei & Chang, Youngho, 2015. "Infrastructure investments for power trade and transmission in ASEAN+2: Costs, benefits, long-term contracts and prioritized developments," Energy Economics, Elsevier, vol. 51(C), pages 484-492.
    13. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    14. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    15. Johansson, Daniel J. A. & Lucas, Paul L. & Weitzel, Matthias & Ahlgren, Erik O. & Bazaz, A. B. & Chen, Wenying & den Elzen, Michel G. J. & Ghosh, Joydeep & Grahn, Maria & Liang, Qiao-Mei & Peterson, S, 2012. "Multi-model analyses of the economic and energy implications for China and India in a post-Kyoto climate regime," Kiel Working Papers 1808, Kiel Institute for the World Economy (IfW Kiel).
    16. Changhong, Chen & Bingyan, Wang & Qingyan, Fu & Green, Collin & Streets, David G., 2006. "Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study," Energy Policy, Elsevier, vol. 34(6), pages 754-762, April.
    17. Li, Nan & Chen, Wenying, 2018. "Modeling China’s interprovincial coal transportation under low carbon transition," Applied Energy, Elsevier, vol. 222(C), pages 267-279.
    18. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    19. Li, Jinchao & Wang, Lina & Lin, Xiaoshan & Qu, Shen, 2020. "Analysis of China’s energy security evaluation system: Based on the energy security data from 30 provinces from 2010 to 2016," Energy, Elsevier, vol. 198(C).
    20. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:176-:d:712604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.