IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2383-d541482.html
   My bibliography  Save this article

Quantification of the Flexibility Potential through Smart Charging of Battery Electric Vehicles and the Effects on the Future Electricity Supply System in Germany

Author

Listed:
  • Felix Guthoff

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, DE-70565 Stuttgart, Germany)

  • Nikolai Klempp

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, DE-70565 Stuttgart, Germany)

  • Kai Hufendiek

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, DE-70565 Stuttgart, Germany)

Abstract

Electrification offers an opportunity to decarbonize the transport sector, but it might also increase the need for flexibility options in the energy system, as the uncoordinated charging process of battery electric vehicles ( BEV ) can lead to a demand with high simultaneity. However, coordinating BEV charging by means of smart charging control can also offer substantial flexibility potential. This potential is limited by restrictions resulting from individual mobility behavior and preferences. It cannot be assumed that storage capacity will be available at times when the impact of additional flexibility potential is highest from a systemic point of view. Hence, it is important to determine the flexibility available per vehicle in high temporal (and spatial) resolution. Therefore, in this paper a Markov-Chain Monte Carlo simulation is carried out based on a vast empirical data set to quantify mobility profiles as accurately as possible and to subsequently derive charging load profiles. An hourly flexibility potential is derived and integrated as load shift potential into a linear optimization model for the simultaneous cost-optimal calculation of the dispatch of technology options and long-term capacity planning to meet a given electricity demand. It is shown that the costs induced by BEV charging are largely determined by the profile costs from the combination of the profiles of charging load and renewable generation, and not only by the additional energy and capacity demand. If the charging process can be flexibly controlled, the storage requirement can be reduced and generation from renewable energies can be better integrated.

Suggested Citation

  • Felix Guthoff & Nikolai Klempp & Kai Hufendiek, 2021. "Quantification of the Flexibility Potential through Smart Charging of Battery Electric Vehicles and the Effects on the Future Electricity Supply System in Germany," Energies, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2383-:d:541482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Schulz & Kai Hufendiek, 2021. "Discussing the Actual Impact of Optimizing Cost and GHG Emission Minimal Charging of Electric Vehicles in Distributed Energy Systems," Energies, MDPI, vol. 14(3), pages 1-20, February.
    2. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    3. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    4. Stavros Lazarou & Vasiliki Vita & Christos Christodoulou & Lambros Ekonomou, 2018. "Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production," Energies, MDPI, vol. 11(9), pages 1-15, September.
    5. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Hildermeier & Jaap Burger & Andreas Jahn & Jan Rosenow, 2022. "A Review of Tariffs and Services for Smart Charging of Electric Vehicles in Europe," Energies, MDPI, vol. 16(1), pages 1-13, December.
    2. Amra Jahic & Felix Heider & Maik Plenz & Detlef Schulz, 2022. "Flexibility Quantification and the Potential for Its Usage in the Case of Electric Bus Depots with Unidirectional Charging," Energies, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    2. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    3. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    4. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    5. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    6. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    7. Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
    8. Yu, Hyun Jin Julie, 2018. "A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030," Energy Policy, Elsevier, vol. 113(C), pages 673-687.
    9. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    10. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    11. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    12. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    13. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    14. Mou, Dunguo & Wang, Zining, 2022. "A systematic analysis of integrating variable wind power into Fujian power grid," Energy Policy, Elsevier, vol. 170(C).
    15. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    16. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Post-Print hal-03350191, HAL.
    17. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    18. Carlo Lucheroni & Carlo Mari, 2018. "Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach," Energies, MDPI, vol. 11(3), pages 1-21, March.
    19. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    20. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2383-:d:541482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.