IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p865-d495214.html
   My bibliography  Save this article

A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)

Author

Listed:
  • Hugo Díaz

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1000 Lisbon, Portugal)

  • Carlos Guedes Soares

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1000 Lisbon, Portugal)

Abstract

The study presents a methodology for floating wind farms site selection with a Canary Islands case study. The frame combines geographical information systems (GIS) and multiple criteria decision methods (MCDMs). First, the problematic areas for the installation of the turbines are identified through a GIS database application. This tool generates thematic layers representing exclusion criteria. Then, at the second stage of the study, available maritime locations are analyzed and ranked using the analytical hierarchy process (AHP), based on technical, economic, and environmental aspects. AHP’s technique guarantee the elimination of the judgment’s subjectivity. The study also compared the solutions of the AHP technique with other methods, such as Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Realité (ELECTRE III), Technique for Order Preferences by Similarity to Ideal Solution (TOPSIS) and Weighted Sum Algorithm (WSA(). The main result of this study is the creation of a realistic and objective overview of floating offshore wind farm site selection and the contribution to minimize the environmental impacts and to reduce the social conflicts between stakeholders.

Suggested Citation

  • Hugo Díaz & Carlos Guedes Soares, 2021. "A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)," Energies, MDPI, vol. 14(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:865-:d:495214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2020. "Wave energy assessment based on a 33-year hindcast for the Canary Islands," Renewable Energy, Elsevier, vol. 152(C), pages 259-269.
    2. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Tsoutsos, T. & Tsitoura, I. & Kokologos, D. & Kalaitzakis, K., 2015. "Sustainable siting process in large wind farms case study in Crete," Renewable Energy, Elsevier, vol. 75(C), pages 474-480.
    4. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    5. Florin Onea & Sorin Ciortan & Eugen Rusu, 2017. "Assessment of the potential for developing combined wind-wave projects in the European nearshore," Energy & Environment, , vol. 28(5-6), pages 580-597, September.
    6. Paweł Ziemba & Jarosław Wątróbski & Magdalena Zioło & Artur Karczmarczyk, 2017. "Using the PROSA Method in Offshore Wind Farm Location Problems," Energies, MDPI, vol. 10(11), pages 1-20, November.
    7. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    8. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    9. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    10. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    11. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    12. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    13. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    14. Chaouachi, Aymen & Covrig, Catalin Felix & Ardelean, Mircea, 2017. "Multi-criteria selection of offshore wind farms: Case study for the Baltic States," Energy Policy, Elsevier, vol. 103(C), pages 179-192.
    15. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    16. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
    2. Putuhena, Hugo & White, David & Gourvenec, Susan & Sturt, Fraser, 2023. "Finding space for offshore wind to support net zero: A methodology to assess spatial constraints and future scenarios, illustrated by a UK case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    4. Charalampos Baniotopoulos, 2022. "Advances in Floating Wind Energy Converters," Energies, MDPI, vol. 15(15), pages 1-3, August.
    5. Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), 2021. "Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 32, number 32.
    6. Artur Amsharuk & Grażyna Łaska, 2023. "The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland," Energies, MDPI, vol. 16(20), pages 1-24, October.
    7. Adam Kaizer & Tomasz Neumann, 2021. "The Model of Support for the Decision-Making Process, While Organizing Dredging Works in the Ports," Energies, MDPI, vol. 14(9), pages 1-15, May.
    8. Weigell, Jürgen & Jahn, Carlos, 2021. "Literature review of installation logistics for floating offshore wind turbines," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 599-622, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    9. Hugo Díaz & C. Guedes Soares, 2022. "Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables," Energies, MDPI, vol. 15(18), pages 1-18, September.
    10. Tomasz Neumann, 2021. "Comparative Analysis of Long-Distance Transportation with the Example of Sea and Rail Transport," Energies, MDPI, vol. 14(6), pages 1-13, March.
    11. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    12. Ualison Rébula De Oliveira & Hilda Anatiely Donato Souza & Carlos Augusto Gabriel Menezes & Henrique Martins Rocha, 2023. "Straightening machine preventive maintenance intervention plan based on AHP: a case study in a steel company in Brazil," Operations Management Research, Springer, vol. 16(3), pages 1577-1593, September.
    13. Ayough, Ashkan & Boshruei, Setareh & Khorshidvand, Behrooz, 2022. "A new interactive method based on multi-criteria preference degree functions for solar power plant site selection," Renewable Energy, Elsevier, vol. 195(C), pages 1165-1173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
    2. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    4. Hugo Díaz & C. Guedes Soares, 2022. "Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables," Energies, MDPI, vol. 15(18), pages 1-18, September.
    5. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
    6. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    9. Sofia Spyridonidou & Dimitra G. Vagiona & Eva Loukogeorgaki, 2020. "Strategic Planning of Offshore Wind Farms in Greece," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    10. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    11. Marina Polykarpou & Flora Karathanasi & Takvor Soukissian & Vasiliki Loukaidi & Ioannis Kyriakides, 2023. "A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting," Energies, MDPI, vol. 16(5), pages 1-17, February.
    12. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    13. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    14. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    15. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    16. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    17. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    18. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    19. Ayough, Ashkan & Boshruei, Setareh & Khorshidvand, Behrooz, 2022. "A new interactive method based on multi-criteria preference degree functions for solar power plant site selection," Renewable Energy, Elsevier, vol. 195(C), pages 1165-1173.
    20. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:865-:d:495214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.