IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1755-d117308.html
   My bibliography  Save this article

Using the PROSA Method in Offshore Wind Farm Location Problems

Author

Listed:
  • Paweł Ziemba

    () (Faculty of Technology, The Jacob of Paradies University, Teatralna 25, 66-400 Gorzów Wielkopolski, Poland)

  • Jarosław Wątróbski

    () (Faculty of Economics and Management, University of Szczecin, Mickiewicza 64, 71-101 Szczecin, Poland)

  • Magdalena Zioło

    () (Faculty of Management and Economics of Services, University of Szczecin, Cukrowa 8, 71-004 Szczecin, Poland)

  • Artur Karczmarczyk

    () (Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Żołnierska 49, 71-210 Szczecin, Poland)

Abstract

Wind is the most used renewable energy source (RES) in the European Union and Poland. Due to the legal changes in the scope of RES in Poland, there are plans to develop offshore wind farms at the expense of onshore ones. On the other hand, the success of an offshore wind farm is primarily determined by its location. Therefore, the aim of this study is to select offshore wind farm locations in Poland, based on sustainability assessment, which is an inherent aspect of RES decision-making issues. To accomplish the objectives of this research, PROSA (PROMETHEE for Sustainability Assessment) method, a new multi-criteria method is proposed. Like PROMETHEE (Preference Ranking Organization METHod for Enrichment Evaluation), PROSA is transparent for decision makers and is easy to use; moreover, it provides the analytical tools available in PROMETHEE, i.e., the sensitivity and GAIA (Geometrical Analysis for Interactive Assistance) analyses. However, PROSA is characterized by a lower degree of criteria compensation than PROMETHEE. Thus, it adheres in a higher degree to the strong sustainability paradigm. The study also compared the solutions of the decision problem obtained with the use of PROSA and PROMETHEE methods. The compared methods demonstrated a high concurrence of the recommended decision-making variant of location selection, from methodological and practical points of view. At the same time, the conducted research allowed to confirm that the PROSA method recommends more sustainable decision-making variants, and that the ranking it builds is less sensitive to changes in criteria weights. Therefore, it is more stable than the PROMETHEE-based ranking.

Suggested Citation

  • Paweł Ziemba & Jarosław Wątróbski & Magdalena Zioło & Artur Karczmarczyk, 2017. "Using the PROSA Method in Offshore Wind Farm Location Problems," Energies, MDPI, Open Access Journal, vol. 10(11), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1755-:d:117308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1755/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    2. Al-Shemmeri, Tarik & Al-Kloub, Bashar & Pearman, Alan, 1997. "Model choice in multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 97(3), pages 550-560, March.
    3. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, Open Access Journal, vol. 9(11), pages 1-26, October.
    4. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, Open Access Journal, vol. 7(10), pages 1-38, October.
    5. repec:gam:jeners:v:9:y:2016:i:1:p:46:d:62225 is not listed on IDEAS
    6. Huiru Zhao & Nana Li, 2016. "Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria Decision Making Approaches from an Extended Sustainability Perspective," Energies, MDPI, Open Access Journal, vol. 9(4), pages 1-22, April.
    7. Mareschal, Bertrand & Brans, Jean-Pierre, 1988. "Geometrical representations for MCDA," European Journal of Operational Research, Elsevier, vol. 34(1), pages 69-77, February.
    8. Fabio Zagonari, 2016. "Four Sustainability Paradigms for Environmental Management: A Methodological Analysis and an Empirical Study Based on 30 Italian Industries," Sustainability, MDPI, Open Access Journal, vol. 8(6), pages 1-34, May.
    9. Abdullahi Abubakar Mas’ud & Asan Vernyuy Wirba & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Álvaro Jaramillo Duque & Nurul Aini Bani & Abu Bakar Munir, 2017. "Wind Power Potentials in Cameroon and Nigeria: Lessons from South Africa," Energies, MDPI, Open Access Journal, vol. 10(4), pages 1-19, March.
    10. repec:gam:jeners:v:9:y:2016:i:1:p:-:d:62225 is not listed on IDEAS
    11. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-25, April.
    12. Jennifer C. Wilson & Mike Elliott & Nick D. Cutts & Lucas Mander & Vera Mendão & Rafael Perez-Dominguez & Anna Phelps, 2010. "Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign?," Energies, MDPI, Open Access Journal, vol. 3(7), pages 1-40, July.
    13. repec:gam:jsusta:v:7:y:2015:i:12:p:16022-16038:d:59844 is not listed on IDEAS
    14. He-Yau Kang & Meng-Chan Hung & W. L. Pearn & Amy H. I. Lee & Mei-Sung Kang, 2011. "An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance," Energies, MDPI, Open Access Journal, vol. 4(11), pages 1-25, November.
    15. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    16. Hui Li & Kangyin Dong & Renjin Sun & Jintao Yu & Jinhong Xu, 2017. "Sustainability Assessment of Refining Enterprises Using a DEA-Based Model," Sustainability, MDPI, Open Access Journal, vol. 9(4), pages 1-15, April.
    17. Gianluigi De Mare & Maria Fiorella Granata & Antonio Nesticò, 2015. "Weak and Strong Compensation for the Prioritization of Public Investments: Multidimensional Analysis for Pools," Sustainability, MDPI, Open Access Journal, vol. 7(12), pages 1-17, December.
    18. Chaouachi, Aymen & Covrig, Catalin Felix & Ardelean, Mircea, 2017. "Multi-criteria selection of offshore wind farms: Case study for the Baltic States," Energy Policy, Elsevier, vol. 103(C), pages 179-192.
    19. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    20. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Melin, S., 2010. "A multicriteria approach to evaluate district heating system options," Applied Energy, Elsevier, vol. 87(4), pages 1134-1140, April.
    21. Guitouni, Adel & Martel, Jean-Marc, 1998. "Tentative guidelines to help choosing an appropriate MCDA method," European Journal of Operational Research, Elsevier, vol. 109(2), pages 501-521, September.
    22. Alberto Pliego Marugán & Fausto Pedro García Márquez & Jesús María Pinar Pérez, 2016. "Optimal Maintenance Management of Offshore Wind Farms," Energies, MDPI, Open Access Journal, vol. 9(1), pages 1-20, January.
    23. Paska, Józef & Surma, Tomasz, 2014. "Electricity generation from renewable energy sources in Poland," Renewable Energy, Elsevier, vol. 71(C), pages 286-294.
    24. repec:gam:jeners:v:9:y:2016:i:4:p:270:d:67633 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingtao Yi & Weiwei Li & Lingyu Li, 2018. "Evaluation and Prediction of City Sustainability Using MCDM and Stochastic Simulation Methods," Sustainability, MDPI, Open Access Journal, vol. 10(10), pages 1-15, October.
    2. Aleksandra Król & Jerzy Księżak & Elżbieta Kubińska & Stelios Rozakis, 2018. "Evaluation of Sustainability of Maize Cultivation in Poland. A Prospect Theory—PROMETHEE Approach," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-19, November.
    3. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, Open Access Journal, vol. 11(6), pages 1-29, March.
    4. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, Open Access Journal, vol. 11(9), pages 1-25, September.
    5. Santiago Salvador & Xurxo Costoya & Francisco Javier Sanz-Larruga & Luis Gimeno, 2018. "Development of Offshore Wind Power: Contrasting Optimal Wind Sites with Legal Restrictions in Galicia, Spain," Energies, MDPI, Open Access Journal, vol. 11(4), pages 1-25, March.
    6. Agnieszka Konys, 2018. "An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-27, January.
    7. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, Open Access Journal, vol. 12(4), pages 1-29, February.
    8. Ji Chen & Jinsheng Wang & Tomas Baležentis & Fausta Zagurskaitė & Dalia Streimikiene & Daiva Makutėnienė, 2018. "Multicriteria Approach towards the Sustainable Selection of a Teahouse Location with Sensitivity Analysis," Sustainability, MDPI, Open Access Journal, vol. 10(8), pages 1-17, August.
    9. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-21, October.
    10. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-26, July.
    11. Wojciech Sałabun & Krzysztof Palczewski & Jarosław Wątróbski, 2019. "Multicriteria Approach to Sustainable Transport Evaluation under Incomplete Knowledge: Electric Bikes Case Study," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-19, June.
    12. Rujee Rodcha & Nitin K. Tripathi & Rajendra Prasad Shrestha, 2019. "Comparison of Cash Crop Suitability Assessment Using Parametric, AHP, and FAHP Methods," Land, MDPI, Open Access Journal, vol. 8(5), pages 1-22, May.

    More about this item

    Keywords

    sustainability assessment; strong sustainability; wind energy; offshore; multi-criteria decision analysis (MCDA); PROSA; PROMETHEE; GAIA; sensitivity analysis;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1755-:d:117308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.