IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8277-d698094.html
   My bibliography  Save this article

Solar Power and Energy Storage for Decarbonization of Land Transport in India

Author

Listed:
  • John P. Barton

    (Centre for Renewable Energy Systems Technology, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, Leicestershire, UK)

  • Murray Thomson

    (Centre for Renewable Energy Systems Technology, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, Leicestershire, UK)

Abstract

By considering the weight penalty of batteries on payload and total vehicle weight, this paper shows that almost all forms of land-based transport may be served by battery electric vehicles (BEV) with acceptable cost and driving range. Only long-distance road freight is unsuitable for battery electrification. The paper models the future Indian electricity grid supplied entirely by low-carbon forms of generation to quantify the additional solar PV power required to supply energy for transport. Hydrogen produced by water electrolysis for use as a fuel for road freight provides an inter-seasonal energy store that accommodates variations in renewable energy supply. The advantages and disadvantages are considered of midday electric vehicle charging vs. overnight charging considering the temporal variations in supply of renewable energy and demand for transport services. There appears to be little to choose between these two options in terms of total system costs. The result is an energy scenario for decarbonized surface transport in India, based on renewable energy, that is possible, realistically achievable, and affordable in a time frame of year 2050.

Suggested Citation

  • John P. Barton & Murray Thomson, 2021. "Solar Power and Energy Storage for Decarbonization of Land Transport in India," Energies, MDPI, vol. 14(24), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8277-:d:698094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    2. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    3. Brown, Stephen & Pyke, David & Steenhof, Paul, 2010. "Electric vehicles: The role and importance of standards in an emerging market," Energy Policy, Elsevier, vol. 38(7), pages 3797-3806, July.
    4. Natalie D. Popovich & Deepak Rajagopal & Elif Tasar & Amol Phadke, 2021. "Economic, environmental and grid-resilience benefits of converting diesel trains to battery-electric," Nature Energy, Nature, vol. 6(11), pages 1017-1025, November.
    5. Mittal, Shivika & Ahlgren, Erik O. & Shukla, P.R., 2019. "Future biogas resource potential in India: A bottom-up analysis," Renewable Energy, Elsevier, vol. 141(C), pages 379-389.
    6. Rong-Ceng Leou & Jeng-Jiun Hung, 2017. "Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations," Energies, MDPI, vol. 10(4), pages 1-17, April.
    7. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    8. Dhar, Subash & Shukla, Priyadarshi R., 2015. "Low carbon scenarios for transport in India: Co-benefits analysis," Energy Policy, Elsevier, vol. 81(C), pages 186-198.
    9. Itf, 2021. "Decarbonising Morocco’s Transport System: Charting the Way Forward," International Transport Forum Policy Papers 89, OECD Publishing.
    10. Itf, 2021. "Decarbonising India’s Transport System: Charting the Way Forward," International Transport Forum Policy Papers 88, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.
    3. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    4. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    5. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    6. Yanguas Parra, Paola & Hauenstein, Christian & Oei, Pao-Yu, 2021. "The death valley of coal – Modelling COVID-19 recovery scenarios for steam coal markets," Applied Energy, Elsevier, vol. 288(C).
    7. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    8. repec:hrs:journl::y:2012:v:4:i:3:p:105-125 is not listed on IDEAS
    9. Rohit Sharma, 2018. "Financing Indian Urban Rail through Land Development: Case Studies and Implications for the Accelerated Reduction in Oil Associated with 1.5 °C," Urban Planning, Cogitatio Press, vol. 3(2), pages 21-34.
    10. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    11. Yongsheng Lin & Zhe Liu & Rui Liu & Xiaoman Yu & Liming Zhang, 2020. "Uncovering driving forces of co-benefits achieved by eco-industrial development strategies at the scale of industrial park," Energy & Environment, , vol. 31(2), pages 275-290, March.
    12. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    13. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    14. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    15. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    16. Steve Pye & Christophe McGlade & Chris Bataille & Gabrial Anandarajah & Amandine Denis-Ryan & Vladimir Potashnikov, 2016. "Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 92-109, June.
    17. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    18. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    19. Johansson, Daniel J. A. & Lucas, Paul L. & Weitzel, Matthias & Ahlgren, Erik O. & Bazaz, A. B. & Chen, Wenying & den Elzen, Michel G. J. & Ghosh, Joydeep & Grahn, Maria & Liang, Qiao-Mei & Peterson, S, 2012. "Multi-model analyses of the economic and energy implications for China and India in a post-Kyoto climate regime," Kiel Working Papers 1808, Kiel Institute for the World Economy (IfW Kiel).
    20. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    21. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8277-:d:698094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.