IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6442-d652131.html
   My bibliography  Save this article

Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios

Author

Listed:
  • Laura Canale

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy
    Faculty of Economy, Universitas Mercatorum, Piazza Mattei 10, 00186 Rome, Italy)

  • Marianna De Monaco

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy)

  • Biagio Di Pietra

    (Dipartimento Unità per l’Efficienza Energetica, Agenzia Nazionale per le Nuove Tecnologie, L’energia e lo Sviluppo Sostenibile (ENEA), Via Anguillarese, 301, 00123 Rome, Italy)

  • Giovanni Puglisi

    (Dipartimento Unità per l’Efficienza Energetica, Agenzia Nazionale per le Nuove Tecnologie, L’energia e lo Sviluppo Sostenibile (ENEA), Via Anguillarese, 301, 00123 Rome, Italy)

  • Giorgio Ficco

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy)

  • Ilaria Bertini

    (Dipartimento Unità per l’Efficienza Energetica, Agenzia Nazionale per le Nuove Tecnologie, L’energia e lo Sviluppo Sostenibile (ENEA), Via Anguillarese, 301, 00123 Rome, Italy)

  • Marco Dell’Isola

    (Department of Civil and Mechanical Engineering, University of Cassino and South Lazio, 03043 Cassino, Italy)

Abstract

The Energy Performance of Buildings Directive 2018/844/EU introduced the smart readiness indicator (SRI) to provide a framework to evaluate and promote building smartness in Europe. In order to establish a methodological framework for the SRI calculation, two technical studies were launched, at the end of which a consolidated methodology to calculate the SRI of a building basing on a flexible and modular multicriteria assessment has been proposed. In this paper the authors applied the above-mentioned methodology to estimate the SRI of the Italian residential building stock in different scenarios. To this end, eight “smart building typologies”, representative of the Italian residential building stock, have been identified. For each smart building typology, the SRI was calculated in three scenarios: (a) base scenario (building stock as it is); (b) an “energy scenario” (simple energy retrofit) and (c) a “smart energy scenario” (energy retrofit from a smart perspective). It was therefore possible to estimate a national average SRI value of 5.0%, 15.7%, and 27.5% in the three above defined scenarios, respectively.

Suggested Citation

  • Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6442-:d:652131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    2. Ilaria Vigna & Roberta Pernetti & Giovanni Pernigotto & Andrea Gasparella, 2020. "Analysis of the Building Smart Readiness Indicator Calculation: A Comparative Case-Study with Two Panels of Experts," Energies, MDPI, vol. 13(11), pages 1-18, June.
    3. Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
    4. Elisa Conticelli & Gianluca Gobbi & Paula Isabella Saavedra Rosas & Simona Tondelli, 2021. "Assessing the Performance of Modal Interchange for Ensuring Seamless and Sustainable Mobility in European Cities," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    5. Paris A. Fokaides & Christiana Panteli & Andri Panayidou, 2020. "How Are the Smart Readiness Indicators Expected to Affect the Energy Performance of Buildings: First Evidence and Perspectives," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    6. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Francesca De Masi & Gerardo Maria Mauro & Silvia Ruggiero & Francesca Villano, 2023. "Predicting Building Energy Demand and Retrofit Potentials Using New Climatic Stress Indices and Curves," Energies, MDPI, vol. 16(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Thillo, L. & Verbeke, S. & Audenaert, A., 2022. "The potential of building automation and control systems to lower the energy demand in residential buildings: A review of their performance and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    3. Busscher, Tim & Tillema, Taede & Arts, Jos, 2015. "In search of sustainable road infrastructure planning: How can we build on historical policy shifts?," Transport Policy, Elsevier, vol. 42(C), pages 42-51.
    4. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    5. Thomas Vanoutrive & Ann Verhetsel, 2013. "Classifying transport studies using three dimensions of society: market structure, sustainability and decision making," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 1, pages 1-8, Edward Elgar Publishing.
    6. Tornberg, Patrik & Odhage, John, 2018. "Making transport planning more collaborative? The case of Strategic Choice of Measures in Swedish transport planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 416-429.
    7. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    8. Alvaro Rodriguez-Valencia & Hernan A. Ortiz-Ramirez, 2021. "Understanding Green Street Design: Evidence from Three Cases in the U.S," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    9. Gössling, Stefan, 2016. "Urban transport justice," Journal of Transport Geography, Elsevier, vol. 54(C), pages 1-9.
    10. Cavoli, Clemence, 2021. "Accelerating sustainable mobility and land-use transitions in rapidly growing cities: Identifying common patterns and enabling factors," Journal of Transport Geography, Elsevier, vol. 94(C).
    11. Cai, Hanmin & You, Shi & Wu, Jianzhong, 2020. "Agent-based distributed demand response in district heating systems," Applied Energy, Elsevier, vol. 262(C).
    12. Allard, Ryan F. & Moura, Filipe, 2018. "Effect of transport transfer quality on intercity passenger mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 89-107.
    13. Romanika Okraszewska & Aleksandra Romanowska & Marcin Wołek & Jacek Oskarbski & Krystian Birr & Kazimierz Jamroz, 2018. "Integration of a Multilevel Transport System Model into Sustainable Urban Mobility Planning," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    14. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    15. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    16. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    17. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    18. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    19. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    20. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6442-:d:652131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.