IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5861-d1212571.html
   My bibliography  Save this article

Predicting Building Energy Demand and Retrofit Potentials Using New Climatic Stress Indices and Curves

Author

Listed:
  • Rosa Francesca De Masi

    (DING-Department of Engineering, University of Sannio, Piazza Roma, 21, 82100 Benevento, Italy)

  • Gerardo Maria Mauro

    (DING-Department of Engineering, University of Sannio, Piazza Roma, 21, 82100 Benevento, Italy)

  • Silvia Ruggiero

    (DING-Department of Engineering, University of Sannio, Piazza Roma, 21, 82100 Benevento, Italy)

  • Francesca Villano

    (DING-Department of Engineering, University of Sannio, Piazza Roma, 21, 82100 Benevento, Italy)

Abstract

Building energy requalification in Italy and Europe has been much discussed in recent years due to the high percentage of existing buildings with poor energy performance. In this context, it is useful to obtain a user-friendly and fast tool to predict the thermal energy demand ( TED ) for space conditioning and the related primary energy consumption ( PEC ) as a function of climatic stress. In this study, the SLABE methodology (simulation-based large-scale uncertainty/sensitivity analysis of building energy performance) is used to simulate representative Italian buildings, varying parameters such as geometry, envelope and HVAC (heating, ventilating and space conditioning) systems. MATLAB ® in combination with EnergyPlus is used to analyze 200 buildings belonging to two structural types (multi-family buildings and apartment blocks) built in 1961–1975. Nine scenarios (as-built scenarios and eight retrofit ones) are investigated in 63 climatic locations. A regression analysis shows that the classical HDDs (heating degree days) approach cannot give an accurate prediction of TED because solar radiation is not accounted for. Thus, new climatic indices are developed alongside solar radiation, including the heating stress index ( HSI ), the cooling stress index ( CSI ) and the yearly climatic stress index ( YCSI ). The purpose of our work is to obtain climatic stress curves for the prediction of TED and PEC . Testing of this novel approach is performed by comparison with another building energy simulation tool, showing a low discrepancy, i.e., the coefficient of variation of the root mean square error is between 12% and 28%, which confirms certain reliability of the approach here proposed.

Suggested Citation

  • Rosa Francesca De Masi & Gerardo Maria Mauro & Silvia Ruggiero & Francesca Villano, 2023. "Predicting Building Energy Demand and Retrofit Potentials Using New Climatic Stress Indices and Curves," Energies, MDPI, vol. 16(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5861-:d:1212571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.
    2. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    3. David A. Swanson, 2015. "On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 1-14, August.
    4. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    6. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    2. Massimiliano Manfren & Benedetto Nastasi, 2020. "Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A Scalable Approach for Buildings," Energies, MDPI, vol. 13(3), pages 1-14, February.
    3. Jiang, Dachuan & Xiao, Weihua & Wang, Jianhua & Wang, Hao & Zhao, Yong & Li, Baoqi & Zhou, Pu, 2018. "Evaluation of the effects of one cold wave on heating energy consumption in different regions of northern China," Energy, Elsevier, vol. 142(C), pages 331-338.
    4. Yangyi Song & Ao Du & Tong Cui, 2024. "Using the Degree-Day Method to Analyze Central Heating Energy Consumption in Cities of Northern China," Sustainability, MDPI, vol. 16(3), pages 1-14, January.
    5. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    6. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    7. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    8. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    9. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    10. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    12. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    13. Shengyuan Guo & Wanjiang Wang & Yihuan Zhou, 2022. "Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    14. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    16. Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.
    17. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    18. Raihan Tanvir & Md Tanvir Rouf Shawon & Md. Golam Rabiul Alam, 2023. "DSE Stock Price Prediction using Hidden Markov Model," Papers 2302.08911, arXiv.org.
    19. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    20. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5861-:d:1212571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.