IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v31y2023i2p840-852.html
   My bibliography  Save this article

The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling

Author

Listed:
  • Idiano D'Adamo
  • Massimo Gastaldi
  • Ilhan Ozturk

Abstract

The transportation sector has a strong negative impact on the environment and therefore requires new sustainable development measures. This paper proposes a new indicator of sustainability in transport obtained through a multi‐criteria analysis based on Eurostat data and a panel of 10 academics. The results show a positive performance of Sweden in the period 2015–2019 and a small number of countries above the European average. Furthermore, a quantitative analysis based on these experts identifies the critical success factors associated with purchasing electric vehicles. The greatest importance is assigned to purchase cost, followed by battery autonomy. Our analysis proposes that electric vehicles are unable to achieve a sustainable transition unless three conditions are met: (i) use of renewable sources, (ii) local industrial development of the sector, and (iii) battery recycling. Therefore, Europe urgently needs to realize new industrial activities and avoid social unsustainability. The long‐term objective of a policy plan is to promote independence from external sources of energy, materials, and other resources.

Suggested Citation

  • Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
  • Handle: RePEc:wly:sustdv:v:31:y:2023:i:2:p:840-852
    DOI: 10.1002/sd.2424
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2424
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominik Jasiński & James Meredith & Kerry Kirwan, 2021. "Sustainable development model for measuring and managing sustainability in the automotive sector," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1123-1137, November.
    2. Adewale Alola, Andrew & Ozturk, Ilhan & Bekun, Festus Victor, 2021. "Is clean energy prosperity and technological innovation rapidly mitigating sustainable energy-development deficit in selected sub-Saharan Africa? A myth or reality," Energy Policy, Elsevier, vol. 158(C).
    3. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    4. Tadashi Hirai, 2022. "A balancing act between economic growth and sustainable development: Historical trajectory through the lens of development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1900-1910, December.
    5. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    6. Di Vaio, Assunta & Trujillo, Lourdes & D'Amore, Gabriella & Palladino, Rosa, 2021. "Water governance models for meeting sustainable development Goals:A structured literature review," Utilities Policy, Elsevier, vol. 72(C).
    7. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    8. Joris Baars & Teresa Domenech & Raimund Bleischwitz & Hans Eric Melin & Oliver Heidrich, 2021. "Circular economy strategies for electric vehicle batteries reduce reliance on raw materials," Nature Sustainability, Nature, vol. 4(1), pages 71-79, January.
    9. Axel Lindfors & Roozbeh Feiz & Mats Eklund & Jonas Ammenberg, 2019. "Assessing the Potential, Performance and Feasibility of Urban Solutions: Methodological Considerations and Learnings from Biogas Solutions," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    10. Justas Streimikis & Tomas Baležentis, 2020. "Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1702-1712, November.
    11. Idiano D'Adamo & Massimo Gastaldi & Paolo Rosa, 2021. "Assessing Environmental and Energetic Indexes in 27 European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 417-423.
    12. Rohit Agrawal & Abhijit Majumdar & Kirty Majumdar & Rakesh D. Raut & Balkrishna E. Narkhede, 2022. "Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3669-3687, November.
    13. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    14. Marco Vacchi & Cristina Siligardi & Fabio Demaria & Erika Iveth Cedillo-González & Rocío González-Sánchez & Davide Settembre-Blundo, 2021. "Technological Sustainability or Sustainable Technology? A Multidimensional Vision of Sustainability in Manufacturing," Sustainability, MDPI, vol. 13(17), pages 1-18, September.
    15. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    16. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    17. Mariia Kostetckaia & Markus Hametner, 2022. "How Sustainable Development Goals interlinkages influence European Union countries’ progress towards the 2030 Agenda," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 916-926, October.
    18. Maria Morfoulaki & Jason Papathanasiou, 2021. "Use of the Sustainable Mobility Efficiency Index (SMEI) for Enhancing the Sustainable Urban Mobility in Greek Cities," Sustainability, MDPI, vol. 13(4), pages 1, February.
    19. Hyeongjin Ahn & Eunil Park, 2022. "For sustainable development in the transportation sector: Determinants of acceptance of sustainable transportation using the innovation diffusion theory and technology acceptance model," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1169-1183, October.
    20. Szopik-Depczyńska, Katarzyna & Kędzierska-Szczepaniak, Angelika & Szczepaniak, Krzysztof & Cheba, Katarzyna & Gajda, Waldemar & Ioppolo, Giuseppe, 2018. "Innovation in sustainable development: an investigation of the EU context using 2030 agenda indicators," Land Use Policy, Elsevier, vol. 79(C), pages 251-262.
    21. Di Vaio, Assunta & Varriale, Luisa & Alvino, Federico, 2018. "Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy," Energy Policy, Elsevier, vol. 122(C), pages 229-240.
    22. Hickel, Jason, 2020. "The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene," Ecological Economics, Elsevier, vol. 167(C).
    23. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    2. Chandra Prakash Garg & Vishal Kashav & Xuemuge Wang, 2023. "Evaluating sustainability factors of green ports in China under fuzzy environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7795-7821, August.
    3. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    4. Wael M. ElDessouki, 2022. "Development of a Neighborhood Mobility Index for Assessing Mobility Disparities in Developing Countries with Application to the Greater Cairo Area, Egypt," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    5. Danish, & Ulucak, Recep & Baloch, Muhammad Awais, 2023. "An empirical approach to the nexus between natural resources and environmental pollution: Do economic policy and environmental-related technologies make any difference?," Resources Policy, Elsevier, vol. 81(C).
    6. Idiano D’Adamo & Massimo Gastaldi, 2022. "Sustainable Development Goals: A Regional Overview Based on Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    7. Rosa Puertas & Luisa Marti, 2023. "Regional analysis of the sustainable development of two Mediterranean countries: Spain and Italy," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 797-811, April.
    8. Claudio Sassanelli & Tiziano Arriga & Stefano Zanin & Idiano D'Adamo & Sergio Terzi, 2022. "Industry 4.0 Driven Result-oriented PSS: An Assessment in the Energy Management," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 186-203, July.
    9. Kocak, Emrah & Bilgili, Faik & Bulut, Umit & Kuskaya, Sevda, 2022. "Is ethanol production responsible for the increase in corn prices?," Renewable Energy, Elsevier, vol. 199(C), pages 689-696.
    10. Yu, Donglei & Wenhui, Xiong & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Imran, Muhammad & Zaman, Khalid & Haffar, Mohamed, 2023. "Navigating the global mineral market: A study of resource wealth and the energy transition," Resources Policy, Elsevier, vol. 82(C).
    11. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    12. Lepore, Dominique & Frontoni, Emanuele & Micozzi, Alessandra & Moccia, Sara & Romeo, Luca & Spigarelli, Francesca, 2023. "Uncovering the potential of innovation ecosystems in the healthcare sector after the COVID-19 crisis," Health Policy, Elsevier, vol. 127(C), pages 80-86.
    13. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    14. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    15. Busscher, Tim & Tillema, Taede & Arts, Jos, 2015. "In search of sustainable road infrastructure planning: How can we build on historical policy shifts?," Transport Policy, Elsevier, vol. 42(C), pages 42-51.
    16. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    17. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    18. Thomas Vanoutrive & Ann Verhetsel, 2013. "Classifying transport studies using three dimensions of society: market structure, sustainability and decision making," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 1, pages 1-8, Edward Elgar Publishing.
    19. Tornberg, Patrik & Odhage, John, 2018. "Making transport planning more collaborative? The case of Strategic Choice of Measures in Swedish transport planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 416-429.
    20. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:31:y:2023:i:2:p:840-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.