IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4612-d604835.html
   My bibliography  Save this article

Health Assessment and Remaining Useful Life Prediction of Wind Turbine High-Speed Shaft Bearings

Author

Listed:
  • Zhenen Li

    (School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)

  • Xinyan Zhang

    (School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)

  • Tusongjiang Kari

    (School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)

  • Wei Hu

    (School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)

Abstract

Vibration signals contain abundant information that reflects the health status of wind turbine high-speed shaft bearings ((HSSBs). Accurate health assessment and remaining useful life (RUL) prediction are the keys to the scientific maintenance of wind turbines. In this paper, a method based on the combination of a comprehensive evaluation function and a self-organizing feature map (SOM) network is proposed to construct a health indicator (HI) curve to characterizes the health state of HSSBs. Considering the difficulty in obtaining life cycle data of similar equipment in a short time, the exponential degradation model is selected as the degradation trajectory of HSSBs on the basis of the constructed HI curve, the Bayesian update model, and the expectation–maximization (EM) algorithm are used to predict the RUL of HSSBs. First, the time domain, frequency domain, and time–frequency domain degradation features of HSSBs are extracted. Second, a comprehensive evaluation function is constructed and used to select the degradation features with good performance. Third, the SOM network is used to fuse the selected degradation features to construct a one-dimensional HI curve. Finally, the exponential degradation model is selected as the degradation trajectory of HSSBs, and the Bayesian update and EM algorithm are used to predict the RUL of the HSSB. The monitoring data of a wind turbine HSSB in actual operation is used to validate the model. The HI curve constructed by the method in this paper can better reflect the degradation process of HSSBs. In terms of life prediction, the method in this paper has better prediction accuracy than the SVR model.

Suggested Citation

  • Zhenen Li & Xinyan Zhang & Tusongjiang Kari & Wei Hu, 2021. "Health Assessment and Remaining Useful Life Prediction of Wind Turbine High-Speed Shaft Bearings," Energies, MDPI, vol. 14(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4612-:d:604835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoping An & Qingbin Tong & Yanan Zhang & Ruifang Liu & Weili Li & Junci Cao & Yuyi Lin, 2021. "An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing," Energies, MDPI, vol. 14(4), pages 1-24, February.
    2. Tarek Berghout & Mohamed Benbouzid & Leïla-Hayet Mouss, 2021. "Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    3. Benedikt Wiese & Niels L. Pedersen & Esmaeil S. Nadimi & Jürgen Herp, 2020. "Estimating the Remaining Power Generation of Wind Turbines—An Exploratory Study for Main Bearing Failures," Energies, MDPI, vol. 13(13), pages 1-11, July.
    4. Shijun Xu & Yi Hou & Xinpu Deng & Kewei Ouyang & Ye Zhang & Shilin Zhou, 2021. "Conflict Management for Target Recognition Based on PPT Entropy and Entropy Distance," Energies, MDPI, vol. 14(4), pages 1-25, February.
    5. Si, Xiao-Sheng & Wang, Wenbin & Chen, Mao-Yin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution," European Journal of Operational Research, Elsevier, vol. 226(1), pages 53-66.
    6. Hui Li & Fan Li & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2021. "Research on the Fault Feature Extraction of Rolling Bearings Based on SGMD-CS and the AdaBoost Framework," Energies, MDPI, vol. 14(6), pages 1-19, March.
    7. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    8. Guoping An & Qingbin Tong & Yanan Zhang & Ruifang Liu & Weili Li & Junci Cao & Yuyi Lin & Qiang Wang & Ying Zhu & Xiaowen Pu, 2021. "A Parameter-Optimized Variational Mode Decomposition Investigation for Fault Feature Extraction of Rolling Element Bearings," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xian & Wang, Chen & Wang, Siqi & Han, He, 2025. "Standby component replacement strategy for a balanced system with a standby pool," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    2. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    3. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    4. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    5. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    6. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    7. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    8. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    9. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    10. Rad Haghi & Cassidy Stagg & Curran Crawford, 2024. "Wind Turbine Damage Equivalent Load Assessment Using Gaussian Process Regression Combining Measurement and Synthetic Data," Energies, MDPI, vol. 17(2), pages 1-24, January.
    11. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    13. Thanh-Cao Le & Tran-Huu-Tin Luu & Huu-Phuong Nguyen & Trung-Hau Nguyen & Duc-Duy Ho & Thanh-Canh Huynh, 2022. "Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures: Current Status and Future Perspectives," Energies, MDPI, vol. 15(15), pages 1-31, July.
    14. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Tziavos, Nikolaos I. & Hemida, H. & Dirar, S. & Papaelias, M. & Metje, N. & Baniotopoulos, C., 2020. "Structural health monitoring of grouted connections for offshore wind turbines by means of acoustic emission: An experimental study," Renewable Energy, Elsevier, vol. 147(P1), pages 130-140.
    16. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    17. Guy Clerc, 2022. "Failure Diagnosis and Prognosis of Induction Machines," Energies, MDPI, vol. 15(4), pages 1-2, February.
    18. Jiaxin Yang & Shengjin Tang & Pengya Fang & Fengfei Wang & Xiaoyan Sun & Xiaosheng Si, 2024. "Remaining useful life prediction of implicit linear Wiener degradation process based on multi-source information," Journal of Risk and Reliability, , vol. 238(1), pages 93-111, February.
    19. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4612-:d:604835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.